版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省邹平县实验中学初中数学毕业考试模拟冲刺卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列立体图形中,主视图是三角形的是()A. B. C. D.2.如图,已知AB∥CD,∠1=115°,∠2=65°,则∠C等于()A.40° B.45° C.50° D.60°3.如图所示是放置在正方形网格中的一个,则的值为()A. B. C. D.4.如图,在6×4的正方形网格中,△ABC的顶点均为格点,则sin∠ACB=()A. B.2 C. D.5.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是()A. B. C. D.6.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是()A.2(x1)+3x=13 B.2(x+1)+3x=13C.2x+3(x+1)=13 D.2x+3(x1)=137.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A.1种 B.2种 C.3种 D.4种8.如图,左、右并排的两棵树AB和CD,小树的高AB=6m,大树的高CD=9m,小明估计自己眼睛距地面EF=1.5m,当他站在F点时恰好看到大树顶端C点.已知此时他与小树的距离BF=2m,则两棵树之间的距离BD是()A.1m B.m C.3m D.m9.如图,a∥b,点B在直线b上,且AB⊥BC,∠1=40°,那么∠2的度数()A.40° B.50° C.60° D.90°10.的化简结果为A.3 B. C. D.9二、填空题(共7小题,每小题3分,满分21分)11.化简:①=_____;②=_____;③=_____.12.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=1.若(x+1)※(x﹣2)=6,则x的值为_____.13.如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=_____14.在由乙猜甲刚才想的数字游戏中,把乙猜的数字记为b且,a,b是0,1,2,3四个数中的其中某一个,若|a﹣b|≤1则称甲乙”心有灵犀”.现任意找两个人玩这个游戏,得出他们”心有灵犀”的概率为_____.15.某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.16.如图,已知AB∥CD,若,则=_____.17.已知线段a=4,b=1,如果线段c是线段a、b的比例中项,那么c=_____.三、解答题(共7小题,满分69分)18.(10分)下表中给出了变量x,与y=ax2,y=ax2+bx+c之间的部分对应值,(表格中的符号“…”表示该项数据已丢失)x﹣101ax2……1ax2+bx+c72…(1)求抛物线y=ax2+bx+c的表达式(2)抛物线y=ax2+bx+c的顶点为D,与y轴的交点为A,点M是抛物线对称轴上一点,直线AM交对称轴右侧的抛物线于点B,当△ADM与△BDM的面积比为2:3时,求B点坐标;(3)在(2)的条件下,设线段BD与x轴交于点C,试写出∠BAD和∠DCO的数量关系,并说明理由.19.(5分)某天,甲、乙、丙三人一起乘坐公交车,他们上车时发现公交车上还有A,B,W三个空座位,且只有A,B两个座位相邻,若三人随机选择座位,试解决以下问题:(1)甲选择座位W的概率是多少;(2)试用列表或画树状图的方法求甲、乙选择相邻座位A,B的概率.20.(8分)先化简:()÷,再从﹣2,﹣1,0,1这四个数中选择一个合适的数代入求值.21.(10分)如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.22.(10分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.当每件的销售价为52元时,该纪念品每天的销售数量为件;当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.23.(12分)“千年古都,大美西安”.某校数学兴趣小组就“最想去的西安旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,(景点对应的名称分别是:A:大雁塔B:兵马俑C:陕西历史博物馆D:秦岭野生动物园E:曲江海洋馆).下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B”的学生人数.24.(14分)已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=1.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】
考查简单几何体的三视图.根据从正面看得到的图形是主视图,可得图形的主视图【详解】A、圆锥的主视图是三角形,符合题意;B、球的主视图是圆,不符合题意;C、圆柱的主视图是矩形,不符合题意;D、正方体的主视图是正方形,不符合题意.故选A.【点睛】主视图是从前往后看,左视图是从左往右看,俯视图是从上往下看2、C【解析】分析:根据两直线平行,同位角相等可得再根据三角形内角与外角的性质可得∠C的度数.详解:∵AB∥CD,∴∵∴故选C.点睛:考查平行线的性质和三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和.3、D【解析】
首先过点A向CB引垂线,与CB交于D,表示出BD、AD的长,根据正切的计算公式可算出答案.【详解】解:过点A向CB引垂线,与CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=故选:D.【点睛】此题主要考查了锐角三角函数的定义,关键是掌握正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.4、C【解析】
如图,由图可知BD=2、CD=1、BC=,根据sin∠BCA=可得答案.【详解】解:如图所示,∵BD=2、CD=1,∴BC===,则sin∠BCA===,故选C.【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握正弦函数的定义和勾股定理.5、B【解析】试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.考点:三视图.6、A【解析】
要列方程,首先要根据题意找出题中存在的等量关系,由题意可得到:买A饮料的钱+买B饮料的钱=总印数1元,明确了等量关系再列方程就不那么难了.【详解】设B种饮料单价为x元/瓶,则A种饮料单价为(x-1)元/瓶,根据小峰买了2瓶A种饮料和3瓶B种饮料,一共花了1元,可得方程为:2(x-1)+3x=1.故选A.【点睛】列方程题的关键是找出题中存在的等量关系,此题的等量关系为买A中饮料的钱+买B中饮料的钱=一共花的钱1元.7、B【解析】
首先设毽子能买x个,跳绳能买y根,根据题意列方程即可,再根据二元一次方程求解.【详解】解:设毽子能买x个,跳绳能买y根,根据题意可得:3x+5y=35,y=7-x,∵x、y都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种.故选B.【点睛】本题主要考查二元一次方程的应用,关键在于根据题意列方程.8、B【解析】
由∠AGE=∠CHE=90°,∠AEG=∠CEH可证明△AEG∽△CEH,根据相似三角形对应边成比例求出GH的长即BD的长即可.【详解】由题意得:FB=EG=2m,AG=AB﹣BG=6﹣1.5=4.5m,CH=CD﹣DH=9﹣1.5=7.5m,∵AG⊥EH,CH⊥EH,∴∠AGE=∠CHE=90°,∵∠AEG=∠CEH,∴△AEG∽△CEH,∴==,即=,解得:GH=,则BD=GH=m,故选:B.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中抽象出相似三角形.9、B【解析】分析:根据“平行线的性质、平角的定义和垂直的定义”进行分析计算即可.详解:∵AB⊥BC,∴∠ABC=90°,∵点B在直线b上,∴∠1+∠ABC+∠3=180°,∴∠3=180°-∠1-90°=50°,∵a∥b,∴∠2=∠3=50°.故选B.点睛:熟悉“平行线的性质、平角的定义和垂直的定义”是正确解答本题的关键.10、A【解析】试题分析:根据二次根式的计算化简可得:.故选A.考点:二次根式的化简二、填空题(共7小题,每小题3分,满分21分)11、455【解析】
根据二次根式的性质即可求出答案.【详解】①原式=4;②原式==5;③原式==5,故答案为:①4;②5;③5【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.12、2【解析】
根据新定义运算对式子进行变形得到关于x的方程,解方程即可得解.【详解】由题意得,(x+2)2﹣(x+2)(x﹣2)=6,整理得,3x+3=6,解得,x=2,故答案为2.【点睛】本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键.13、.【解析】
解:令AE=4x,BE=3x,∴AB=7x.∵四边形ABCD为平行四边形,∴CD=AB=7x,CD∥AB,∴△BEF∽△DCF.∴,∴DF=【点睛】本题考查平行四边形的性质及相似三角形的判定与性质,掌握定理正确推理论证是本题的解题关键.14、【解析】
利用P(A)=,进行计算概率.【详解】从0,1,2,3四个数中任取两个则|a﹣b|≤1的情况有0,0;1,1;2,2;3,3;0,1;1,0;1,2;2,1;2,3;3,2;共10种情况,甲乙出现的结果共有4×4=16,故出他们”心有灵犀”的概率为.故答案是:.【点睛】本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.15、10%【解析】
本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)1=1+44%,解这个方程即可求出答案.【详解】解:设这两年平均每年的绿地增长率为x,根据题意得,
(1+x)1=1+44%,
解得x1=-1.1(舍去),x1=0.1.
答:这两年平均每年绿地面积的增长率为10%.故答案为10%【点睛】此题考查增长率的问题,一般公式为:原来的量×(1±x)1=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.16、【解析】【分析】利用相似三角形的性质即可解决问题;【详解】∵AB∥CD,∴△AOB∽△COD,∴,故答案为.【点睛】本题考查平行线的性质,相似三角形的判定和性质等知识,熟练掌握相似三角形的判定与性质是解题的关键.17、1【解析】
根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.【详解】根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.则c1=4×1,c=±1,(线段是正数,负值舍去),故c=1.故答案为1.【点睛】本题考查了比例线段;理解比例中项的概念,这里注意线段不能是负数.三、解答题(共7小题,满分69分)18、(1)y=x2﹣4x+2;(2)点B的坐标为(5,7);(1)∠BAD和∠DCO互补,理由详见解析.【解析】
(1)由(1,1)在抛物线y=ax2上可求出a值,再由(﹣1,7)、(0,2)在抛物线y=x2+bx+c上可求出b、c的值,此题得解;(2)由△ADM和△BDM同底可得出两三角形的面积比等于高的比,结合点A的坐标即可求出点B的横坐标,再利用二次函数图象上点的坐标特征即可求出点B的坐标;(1)利用二次函数图象上点的坐标特征可求出A、D的坐标,过点A作AN∥x轴,交BD于点N,则∠AND=∠DCO,根据点B、D的坐标利用待定系数法可求出直线BD的解析式,利用一次函数图象上点的坐标特征可求出点N的坐标,利用两点间的距离公式可求出BA、BD、BN的长度,由三者间的关系结合∠ABD=∠NBA,可证出△ABD∽△NBA,根据相似三角形的性质可得出∠ANB=∠DAB,再由∠ANB+∠AND=120°可得出∠DAB+∠DCO=120°,即∠BAD和∠DCO互补.【详解】(1)当x=1时,y=ax2=1,解得:a=1;将(﹣1,7)、(0,2)代入y=x2+bx+c,得:,解得:,∴抛物线的表达式为y=x2﹣4x+2;(2)∵△ADM和△BDM同底,且△ADM与△BDM的面积比为2:1,∴点A到抛物线的距离与点B到抛物线的距离比为2:1.∵抛物线y=x2﹣4x+2的对称轴为直线x=﹣=2,点A的横坐标为0,∴点B到抛物线的距离为1,∴点B的横坐标为1+2=5,∴点B的坐标为(5,7).(1)∠BAD和∠DCO互补,理由如下:当x=0时,y=x2﹣4x+2=2,∴点A的坐标为(0,2),∵y=x2﹣4x+2=(x﹣2)2﹣2,∴点D的坐标为(2,﹣2).过点A作AN∥x轴,交BD于点N,则∠AND=∠DCO,如图所示.设直线BD的表达式为y=mx+n(m≠0),将B(5,7)、D(2,﹣2)代入y=mx+n,,解得:,∴直线BD的表达式为y=1x﹣2.当y=2时,有1x﹣2=2,解得:x=,∴点N的坐标为(,2).∵A(0,2),B(5,7),D(2,﹣2),∴AB=5,BD=1,BN=,∴==.又∵∠ABD=∠NBA,∴△ABD∽△NBA,∴∠ANB=∠DAB.∵∠ANB+∠AND=120°,∴∠DAB+∠DCO=120°,∴∠BAD和∠DCO互补.【点睛】本题是二次函数综合题,考查了待定系数法求二次函数和一次函数解析式、等底三角形面积的关系、二次函数的图像与性质、相似三角形的判定与性质.熟练掌握待定系数法是解(1)的关键;熟练掌握等底三角形面积的关系式解(2)的关键;证明△ABD∽△NBA是解(1)的关键.19、(1);(2)【解析】
(1)根据概率公式计算可得;(2)画树状图列出所有等可能结果,从中找到符合要求的结果数,利用概率公式计算可得.【详解】解:(1)由于共有A、B、W三个座位,∴甲选择座位W的概率为,故答案为:;(2)画树状图如下:由图可知,共有6种等可能结果,其中甲、乙选择相邻的座位有两种,所以P(甲乙相邻)==.【点睛】此题考查了树状图法求概率.注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.20、,1.【解析】
先算括号内的减法,同时把除法变成乘法,再根据分式的乘法进行计算,最后代入求出即可.【详解】原式=•=•=.∵由题意,x不能取1,﹣1,﹣2,∴x取2.当x=2时,原式===1.【点睛】本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解答此题的关键.21、(1)y=2x2﹣3x;(2)C(1,﹣1);(3)(,)或(﹣,).【解析】
(1)由直线解析式可求得B点坐标,由A、B坐标,利用待定系数法可求得抛物线的表达式;(2)过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,可设出C点坐标,利用C点坐标可表示出CD的长,从而可表示出△BOC的面积,由条件可得到关于C点坐标的方程,可求得C点坐标;(3)设MB交y轴于点N,则可证得△ABO≌△NBO,可求得N点坐标,可求得直线BN的解析式,联立直线BM与抛物线解析式可求得M点坐标,过M作MG⊥y轴于点G,由B、C的坐标可求得OB和OC的长,由相似三角形的性质可求得的值,当点P在第一象限内时,过P作PH⊥x轴于点H,由条件可证得△MOG∽△POH,由的值,可求得PH和OH,可求得P点坐标;当P点在第三象限时,同理可求得P点坐标.【详解】(1)∵B(2,t)在直线y=x上,∴t=2,∴B(2,2),把A、B两点坐标代入抛物线解析式可得:,解得:,∴抛物线解析式为;(2)如图1,过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,∵点C是抛物线上第四象限的点,∴可设C(t,2t2﹣3t),则E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC=S△CDO+S△CDB=CD•OE+CD•BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面积为2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)存在.设MB交y轴于点N,如图2,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中,∵∠AOB=∠NOB,OB=OB,∠ABO=∠NBO,∴△AOB≌△NOB(ASA),∴ON=OA=,∴N(0,),∴可设直线BN解析式为y=kx+,把B点坐标代入可得2=2k+,解得k=,∴直线BN的解析式为,联立直线BN和抛物线解析式可得:,解得:或,∴M(,),∵C(1,﹣1),∴∠COA=∠AOB=45°,且B(2,2),∴OB=,OC=,∵△POC∽△MOB,∴,∠POC=∠BOM,当点P在第一象限时,如图3,过M作MG⊥y轴于点G,过P作PH⊥x轴于点H,如图3∵∠COA=∠BOG=45°,∴∠MOG=∠POH,且∠PHO=∠MGO,∴△MOG∽△POH,∴∵M(,),∴MG=,OG=,∴PH=MG=,OH=OG=,∴P(,);当点P在第三象限时,如图4,过M作MG⊥y轴于点G,过P作PH⊥y轴于点H,同理可求得PH=MG=,OH=OG=,∴P(﹣,);综上可知:存在满足条件的点P,其坐标为(,)或(﹣,).【点睛】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、全等三角形的判定和性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中用C点坐标表示出△BOC的面积是解题的关键,在(3)中确定出点P的位置,构造相似三角形是解题的关键,注意分两种情况.22、(1)180;(2)每件销售价为55元时,获得最大利润;最大利润为2250元.【解析】分析:(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答;(2)根据等量关系“利润=(售价﹣进价)×销量”列出函数关系式,根据二次函数的性质,即可解答.详解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案为180;(2)由题意得:y=(x﹣40)[200﹣10(x﹣50)]=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250∴每件销售价为55元时,获得最大利润;最大利润为2250元.点睛:此题主要考查了二次函数的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版实习就业服务合同范本(2025年度)2篇
- 2025版大型养殖场与超市直供鲜蛋销售合同3篇
- 二零二五年计算机耗材及配件销售合同3篇
- 二零二五版婴幼儿奶粉电商平台销售合同模板页2
- 2025版学校教师培训与职称评定合作合同3篇
- 农业机械化与农业科技创新发展考核试卷
- 单板加工企业绿色生产与环保责任落实考核试卷
- 2025版塔吊租赁合同样板(安全与环保并重)3篇
- 2025年医疗耗材供应合同
- 矿长聘用合同二零二五年度执行范本(矿山行业适用)3篇
- 2023-2024学年度人教版一年级语文上册寒假作业
- 软件运维考核指标
- 空气动力学仿真技术:格子玻尔兹曼方法(LBM)简介
- 对表达方式进行选择与运用
- GB/T 18488-2024电动汽车用驱动电机系统
- 投资固定分红协议
- 高二物理题库及答案
- 职业发展展示园林
- 七年级下册英语单词默写表直接打印
- 2024版医疗安全不良事件培训讲稿
- 中学英语教学设计PPT完整全套教学课件
评论
0/150
提交评论