版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省驻马店市新蔡县2024届数学高一下期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了得到函数的图象,可以将函数的图象()A.向左平移 B.向右平移C.向左平移 D.向右平移2.数列{an}的通项公式是an=(n+2),那么在此数列中()A.a7=a8最大 B.a8=a9最大C.有唯一项a8最大 D.有唯一项a7最大3.将函数的图像先向右平移个单位,再将所得的图像上每个点的横坐标变为原来的倍,得到的图像,则的可能取值为()A. B. C. D.4.已知m,n是两条不同的直线,是三个不同的平面,则下列命题正确的是()A.若,,则 B.若,则C.若,,,则 D.若,,则5.在锐角中,角,,所对的边分别为,,,边上的高,且,则等于()A. B. C. D.6.在中,,,其面积为,则等于()A. B. C. D.7.某班的60名同学已编号1,2,3,…,60,为了解该班同学的作业情况,老师收取了号码能被5整除的12名同学的作业本,这里运用的抽样方法是()A.简单随机抽样 B.系统抽样C.分层抽样 D.抽签法8.设为等差数列的前n项和,若,则使成立的最小正整数n为()A.6 B.7 C.8 D.99.某正弦型函数的图像如图,则该函数的解析式可以为().A. B.C. D.10.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一.”就是说:圆堡瑽(圆柱体)的体积为:V=×(底面的圆周长的平方×高).则由此可推得圆周率的取值为()A.3 B.3.14 C.3.2 D.3.3二、填空题:本大题共6小题,每小题5分,共30分。11.七位评委为某跳水运动员打出的分数的茎叶图如图,其中位数为_______.12.若三棱锥的底面是以为斜边的等腰直角三角形,,,则该三棱锥的外接球的表面积为________.13.若实数,满足,则的最小值为________.14.方程的解集为____________.15.函数的反函数是______.16.在中,,,,则的面积等于______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,内角、、的对边分别为、、,且.(1)求角的大小;(2)若,求的最大值及相应的角的余弦值.18.已知的顶点,AB边上的中线CM所在直线方程为,AC边上的高BH所在直线方程为.(1)求C点坐标;(2)求直线BC的方程.19.如图,在四棱锥中,平面,底面为菱形.(1)求证:平面;(2)若为的中点,,求证:平面平面.20.如图,在三棱锥中,垂直于平面,.求证:平面.21.已知.(1)求与的夹角;(2)求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
利用的图象变换规律,即可求解,得出结论.【详解】由题意,函数,,又由,故把函数的图象上所有的点,向右平移个单位长度,可得的图象,故选:B.【点睛】本题主要考查了三角函数的图象变换规律,其中解答中熟记三角函数的图象变换是解答的关键,着重考查了推理与运算能力,属于基础题.2、A【解析】,所以,令,解得n≤7,即n≤7时递增,n>7递减,所以a1<a2<a3<…<a7=a8>a9>….所以a7=a8最大.本题选择A选项.3、D【解析】由题意结合辅助角公式有:,将函数的图像先向右平移个单位,所得函数的解析式为:,再将所得的图像上每个点的横坐标变为原来的倍,所得函数的解析式为:,而,据此可得:,据此可得:.本题选择D选项.4、C【解析】
利用线面垂直、线面平行、面面垂直的性质定理分别对选项分析选择.【详解】对于A,若,,则或者;故A错误;对于B,若,则可能在内或者平行于;故B错误;对于C,若,,,过分作平面于,作平面,则根据线面平行的性质定理得,,∴,根据线面平行的判定定理,可得,又,,根据线面平行的性质定理可得,又,∴;故C正确;对于D.若,,则与可能垂直,如墙角;故D错误;故选:C.【点睛】本题考查了面面垂直、线面平行、线面垂直的性质定理及应用,涉及空间线线平行的传递性,考查了空间想象能力,熟练运用定理是关键.5、A【解析】
在中得到,,在中得到,利用面积公式计算得到.【详解】如图所示:在中:,根据勾股定理得到在中:利用勾股定理得到,故故选A【点睛】本题考查了勾股定理,面积公式,意在考查学生解决问题的能力.6、A【解析】
先由三角形面积公式求出,再由余弦定理得到,再由正弦定理,即可得出结果.【详解】因为在中,,,其面积为,所以,因此,所以,所以,由正弦定理可得:,所以.故选A【点睛】本题主要考查解三角形,熟记正弦定理和余弦定理即可,属于基础题型.7、B【解析】由题意,抽出的号码是5,10,15,…,60,符合系统抽样的特点:“等距抽样”,故选B.8、C【解析】
利用等差数列下标和的性质可确定,,,由此可确定最小正整数.【详解】且,使得成立的最小正整数故选:【点睛】本题考查等差数列性质的应用问题,关键是能够熟练应用等差数列下标和性质化简前项和公式.9、C【解析】试题分析:由图象可得最大值为2,则A=2,周期,∴∴,又,是五点法中的第一个点,∴,∴把A,B排除,对于C:,故选C考点:本题考查函数的图象和性质点评:解决本题的关键是确定的值10、A【解析】试题分析:由题意知圆柱体积×(底面的圆周长的平方×高),化简得:,故选A.考点:圆柱的体积公式.二、填空题:本大题共6小题,每小题5分,共30分。11、85【解析】
按照茎叶图,将这组数据按照从小到大的顺序排列,找出中间的一个数即可.【详解】按照茎叶图,这组数据是79,83,84,85,87,92,93.把这组数据按照从小到大的顺序排列,最中间一个是85.所以中位数为85.故答案为:85【点睛】本题考查对茎叶图的认识.考查中位数,属于基础题.12、【解析】
由已知计算后知也是以为斜边的直角三角形,这样的中点到棱锥四个顶点的距离相等,即为外接球的球心,从而很容易得球的半径,计算出表面积.【详解】因为,所以是等腰直角三角形,且为斜边,为的中点,因为底面是以为斜边的等腰直角三角形,所以,点即为球心,则该三棱锥的外接圆半径,故该三棱锥的外接球的表面积为.【点睛】本题考查球的表面积,考查三棱锥与外接球,解题关键是找到外接球的球心,证明也是以为斜边的直角三角形,利用直角三角形的性质是本题的关键.也是寻找外接球球心的一种方法.13、【解析】
由题意可得=≥2=2,由不等式的性质变形可得.【详解】∵正实数a,b满足,∴=≥2=2,∴ab≥2当且仅当=即a=且b=2时取等号.故答案为2.【点睛】本题考查基本不等式求最值,涉及不等式的性质,属基础题.14、或【解析】
首先将原方程利用辅助角公式化简为,再求出的值即可.【详解】由题知:,,.所以或,.解得:或.所以解集为:或.故答案为:或【点睛】本题主要考查正弦函数的图像及特殊角的三角函数值,同时考查了辅助角公式,属于中档题.15、,【解析】
求出函数的值域作为其反函数的定义域,再由求出其反函数的解析式,综合可得出答案.【详解】,则,由可得,,因此,函数的反函数是,.故答案为:,.【点睛】本题考查反三角函数的求解,解题时注意求出原函数的值域作为其反函数的定义域,考查计算能力,属于中等题.16、【解析】
先用余弦定理求得,从而得到,再利用正弦定理三角形面积公式求解.【详解】因为在中,,,由余弦定理得,所以由正弦定理得故答案为:【点睛】本题主要考查正弦定理和余弦定理的应用,还考查了运算求解的能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)的最大值为,此时【解析】
(1)由正弦定理边角互化思想结合内角和定理、诱导公式可得出的值,结合角的取值范围可得出角的大小;(2)由正弦定理得出,,然后利用三角恒等变换思想将转化为关于角的三角函数,可得出的值,并求出的值.【详解】(1)由正弦定理得,即,从而有,即,由得,因为,所以;(2)由正弦定理可知,,则有,,,其中,因为,所以,所以当时,取得最大值,此时,所以,的最大值为,此时.【点睛】本题考查正弦定理边角互化思想的应用,考查内角和定理、诱导公式,以及三角形中最值的求解,求解时常利用正弦定理将边转化为角的三角函数来求解,解题时要充分利用三角恒等变换思想将三角函数解析式化简,考查运算求解能力,属于中等题.18、(1);(2)【解析】
(1)根据点斜式求出AC边所在的直线方程,再由CM所在直线方程,两方程联立即可求解.(2)设,根据题意可得,,两式联立解得的值,再根据两点式即可得到直线BC的方程.【详解】(1)AC边上的高BH所在直线方程为,且,AC边所在的直线方程为,由AB边上的中线CM所在直线方程为,,解得,故C点坐标为.(2)设,则由AC边上的高BH所在直线方程为,可得,AB边上的中线CM所在直线方程为,,,解得,故点的坐标为,则直线BC的方程为,即.【点睛】本题考查了点斜式方程、两点式方程,同时考查了解二元一次方程组,属于基础题.19、(1)证明见解析,(2)证明见解析【解析】
(1)根据底面为菱形得到,根据线面垂直的性质得到,再根据线面垂直的判定即可得到平面.(2)首先利用线面垂直的判定证明平面,再利用面面垂直的判定证明平面平面即可.【详解】(1)因为底面为菱形,所以.平面,平面,所以.平面.(2)因为底面为菱形,且所以为等边三角形.因为为的中点,所以.又因为,所以.平面,平面,所以.平面.因为平面,所以平面平面.【点睛】本题第一问考查线面垂直的判定和性质,第二问考查面面垂直的判定,属于中档题.20、证明见解析【解析】
分析:由线面垂直的性质可得,结合,利用线面垂直的判定定理可得平面.详解:∵面,在面内,∴,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新修订《疫苗流通和预防接种管理条例》培训试题及答案
- 2024年对外贸易出口协议执行规定
- 2024梦想众筹项目协议草案
- 2024消防安全管理服务协议
- 2024年棚户区整改施工协议范本
- 2024年度保密协议中英文正式文件
- 2024年租地协议模板大全
- 出租车经营管理承包协议范本2024
- 2024年养殖场租赁协议样式
- 2024年度商业租赁综合协议模板
- 2023年超星《军事理论》考试题库(通用题型)
- 2023年学习兴税(纳税服务条线)知识考试题库(含答案)
- 《花样年华》的美学分析
- 山东省济南市历下区2023-2024学年八年级上学期期中语文试题
- 图神经网络在生物医学影像分析中的应用
- 浅谈管理者的自我管理
- 语文教学常规检查表
- “思政”课社会实践
- 临时用电漏电保护器运行检测记录表
- 复杂性尿路感染
- 重度残疾儿童送教上门
评论
0/150
提交评论