版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省鸡泽一中2023-2024学年数学高一下期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在等差数列中,已知,数列的前5项的和为,则()A. B. C. D.2.函数的图象沿轴向左平移个单位长度后得到函数的图象的一个对称中心是()A. B. C. D.3.设,则下列结论正确的是()A. B. C. D.4.直线的斜率为()A. B. C. D.5.一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,从中任意取出一个,则取出的小正方体两面涂有油漆的概率是()A.127 B.29 C.46.已知数列满足是数列的前项和,则()A. B. C. D.7.如图,在中,面,,是的中点,则图中直角三角形的个数是()A.5 B.6 C.7 D.88.已知表示两条不同的直线,表示三个不同的平面,给出下列四个命题:①,,,则;②,,,则;③,,,则;④,,,则其中正确的命题个数是()A.1 B.2 C.3 D.49.已知的内角、、的对边分别为、、,且,若,则的外接圆面积为()A. B. C. D.10.若,则()A.-1 B. C.-1或 D.或二、填空题:本大题共6小题,每小题5分,共30分。11.记,则函数的最小值为__________.12.已知两点A(2,1)、B(1,1+)满足=(sinα,cosβ),α,β∈(﹣,),则α+β=_______________13.已知数列中,,,,则的值为_____.14.不等式的解集是_______.15.已知变量,满足,则的最小值为________.16.设函数满足,当时,,则=________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(Ⅰ)已知直线过点且与直线垂直,求直线的方程;(Ⅱ)求与直线的距离为的直线方程.18.设数列是公差为2的等差数列,数列满足,,.(1)求数列、的通项公式;(2)求数列的前项和;(3)设数列,试问是否存在正整数,,使,,成等差数列?若存在,求出,的值;若不存在,请说明理由.19.已知函数.(1)若,求函数的值;(2)求函数的值域.20.已知定义域为的函数是奇函数.(Ⅰ)求实数的值;(Ⅱ)判断函数的单调性,并用定义加以证明.21.如图,已知点和点,,且,其中为坐标原点.(1)若,设点为线段上的动点,求的最小值;(2)若,向量,,求的最小值及对应的的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由,可求出,结合,可求出及.【详解】设数列的前项和为,公差为,因为,所以,则,故.故选C.【点睛】本题考查了等差数列的前项和,考查了等差数列的通项公式,考查了计算能力,属于基础题.2、B【解析】
先求出变换后的函数的解析式,求出所得函数的对称中心坐标,可得出正确选项.【详解】函数的图象沿轴向左平移个单位长度后得到函数的解析式为,令,得,因此,所得函数的图象的一个对称中心是,故选B.【点睛】本题考查图象的变换以及三角函数的对称中心,解题的关键就是求出变换后的三角函数解析式,考查分析问题和解决问题的能力,属于中等题.3、B【解析】
利用不等式的性质,即可求解,得到答案.【详解】由题意知,根据不等式的性质,两边同乘,可得成立.故选:B.【点睛】本题主要考查了不等式的性质及其应用,其中解答中熟记不等式的基本性质是解答的关键,着重考查了推理与运算能力,属于基础题.4、A【解析】
化直线方程为斜截式求解.【详解】直线可化为,∴直线的斜率是,故选:A.【点睛】本题考查直线方程,将一般方程转化为斜截式方程即可得直线的斜率,属于基础题.5、C【解析】
先求出基本事件总数n=27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,由此能求出在27个小正方体中,任取一个其两面涂有油漆的概率.【详解】∵一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,∴基本事件总数n=27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,则在27个小正方体中,任取一个其两面涂有油漆的概率P=1227=故选:C【点睛】本题考查概率的求法,考查古典概型、正方体性质等基础知识,考查推理论证能力、空间想象能力,考查函数与方程思想,是基础题.6、D【解析】
由已知递推关系式可以推出数列的特征,即数列和均是等比数列,利用等比数列性质求解即可.【详解】解:由已知可得,当时,由得,所以数列和均是公比为2的等比数列,首项分别为2和1,由等比数列知识可求得,,故选:D.【点睛】本题主要考查递推关系式,及等比数列的相关知识,属于中档题.7、C【解析】试题分析:因为面,所以,则三角形为直角三角形,因为,所以,所以三角形是直角三角形,易证,所以面,即,则三角形为直角三角形,即共有7个直角三角形;故选C.考点:空间中垂直关系的转化.8、B【解析】
根据线面和线线平行与垂直的性质逐个判定即可.【详解】对①,,,不一定有,故不一定成立.故①错误.对②,令为底面为直角三角形的直三棱柱的三个侧面,且,,,但此时,故不一定成立.故②错误.对③,,,,则成立.故③正确.对④,若,,则,或,又,则.故④正确.综上,③④正确.故选:B【点睛】本题主要考查了根据线面、线线平行与垂直的性质判断命题真假的问题,需要根据题意举出反例或者根据判定定理判定,属于中档题.9、D【解析】
先化简得,再利用正弦定理求出外接圆的半径,即得的外接圆面积.【详解】由题得,所以,所以,所以,所以.由正弦定理得,所以的外接圆面积为.故选D【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.10、C【解析】
将已知等式平方,可根据二倍角公式、诱导公式和同角三角函数平方关系将等式化为,解方程可求得结果.【详解】由得:即,解得:或本题正确选项:【点睛】本题考查三角函数值的求解问题,关键是能够通过平方运算,将等式化简为关于的方程,涉及到二倍角公式、诱导公式和同角三角函数平方关系的应用.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】
利用求解.【详解】,当时,等号成立.故答案为:4【点睛】本题主要考查绝对值不等式求最值,意在考查学生对该知识的理解掌握水平和分析推理能力.12、或0【解析】
运用向量的加减运算和特殊角的三角函数值,可得所求和.【详解】两点A(2,1)、B(1,1)满足(sinα,cosβ),可得(﹣1,)=(,)=(sinα,cosβ),即为sinα,cosβ,α,β∈(),可得α,β=±,则α+β=0或.故答案为0或.【点睛】本题考查向量的加减运算和三角方程的解法,考查运能力,属于基础题.13、1275【解析】
根据递推关系式可求得,从而利用并项求和的方法将所求的和转化为,利用等差数列求和公式求得结果.【详解】由得:则,即本题正确结果:【点睛】本题考查并项求和法、等差数列求和公式的应用,关键是能够利用递推关系式得到数列相邻两项之间的关系,从而采用并项的方式来进行求解.14、【解析】
且,然后解一元二次不等式可得解集.【详解】解:,∴且,或,不等式的解集为,故答案为:.【点睛】本题主要考查分式不等式的解法,关键是将分式不等式转化为其等价形式,属于基础题.15、0【解析】
画出可行域,分析目标函数得,当在y轴上截距最小时,即可求出的最小值.【详解】作出可行域如图:联立得化目标函数为,由图可知,当直线过点时,在y轴上的截距最小,有最小值为,故填.【点睛】本题主要考查了简单的线性规划,属于中档题.16、【解析】
由已知得f()=f()+sin=f()+sin+sin=f()+sin+sin+sin,由此能求出结果.【详解】∵函数f(x)(x∈R)满足f(x+π)=f(x)+sinx,当0≤x<π时,f(x)=0,∴f()=f()+sin=f()+sin+sin=f()+sin+sin+sin=0+=.故答案为:.【点睛】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)或.【解析】
(Ⅰ)根据直线与直线垂直,求得直线的斜率为,再利用直线的点斜式方程,即可求解;(Ⅱ)设所求直线方程为,由点到直线的距离公式,列出方程,求得的值,即可得到答案.【详解】(Ⅰ)由题意,设所求直线的斜率为,由直线的斜率为,因为直线与直线垂直,所以直线的斜率为,所以所求直线的方程为直线的方程为:,即.(Ⅱ)设所求直线方程为,即,直线上任取一点,由点到直线的距离公式,可得,解得或-4,所以所求直线方程为:或.【点睛】本题主要考查了直线方程的求解,两直线的位置关系的应用,以及点到直线的距离公式的应用,着重考查了推理与运算能力,属于基础题.18、(1);.(2)(3)存在,或者,【解析】
(1)令,得,故,代入等式得到,计算得到.(2)利用错位相减法得到前N项和.(3),假设存在正整数,,使成等差数列,则,解得或者.【详解】(1)令,得,所以将代入,得所以数列是以1为首项,2为公比的等比数列,即.(2)两式相减得到化简得到.(3),假设存在正整数,,使成等差数列则,即,因为,为正整数,所以存在或者,使得成等差数列.【点睛】本题考查了等差数列,等比数列的通项公式,错位相减法,综合性大,技巧性强,意在考查学生的综合应用能力.19、(1);(2).【解析】
(1),.(2)由(1),,∴函数的值域为[1,2].20、(Ⅰ)(Ⅱ)在上单调递增,证明见解析【解析】
(1)函数的定义域为,利用奇函数的必要条件,,求出,再用奇函数的定义证明;(2)判断在上单调递增,用单调性的定义证明,任取,求出函数值,用作差法,证明即可.【详解】解:(Ⅰ)∵函数是奇函数,定义域为,∴,即,解之得,此时,为奇函数,;(Ⅱ)由(Ⅰ)知,,设,且,∵,∴,∴,即故在上单调递增.【点睛】本题考查函数奇偶性的应用,注意奇偶性必要条件的运用,减少计算量但要加
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度商业地产项目地下车位使用权转让合同4篇
- 2025产业园项目幕墙二次深化设计、监理及验收服务合同2篇
- 2024年缝纫设备及相关技术咨询合同
- 2025年度新能源汽车买卖及售后服务合同4篇
- 2025年度智能车库门购销安装一体化服务合同4篇
- 2025年度智能安防监控系统设计与实施合同4篇
- 2024铁路信号设备更新改造工程合同文本3篇
- 中国医用呼吸机行业市场调查研究及投资战略咨询报告
- 中国家居百货行业市场调查研究及投资前景预测报告
- 2025年度个人房屋抵押贷款合同终止协议4篇
- C及C++程序设计课件
- 带状疱疹护理查房
- 公路路基路面现场测试随机选点记录
- 平衡计分卡-化战略为行动
- 国家自然科学基金(NSFC)申请书样本
- 幼儿教师干预幼儿同伴冲突的行为研究 论文
- 湖南省省级温室气体排放清单土地利用变化和林业部分
- 材料设备验收管理流程图
- 培训机构消防安全承诺书范文(通用5篇)
- (完整版)建筑业10项新技术(2017年最新版)
- 第8期监理月报(江苏版)
评论
0/150
提交评论