




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广西南宁市金伦中学、华侨、新桥、罗圩中学高一数学第二学期期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在边长为1的等边三角形ABC中,D是AB的中点,E为线段AC上一动点,则的取值范围为()A. B. C. D.2.已知,的线性回归直线方程为,且,之间的一组相关数据如下表所示,则下列说法错误的为A.变量,之间呈现正相关关系 B.可以预测,当时,C. D.由表格数据可知,该回归直线必过点3.化简:()A. B. C. D.4.数列只有5项,分别是3,5,7,9,11,的一个通项公式为()A. B. C. D.5.已知点在直线上,若存在满足该条件的使得不等式成立,则实数的取值范围是()A. B. C. D.6.某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为A.; B.C. D.7.若某扇形的弧长为,圆心角为,则该扇形的半径是()A. B. C. D.8.若实数x,y满足条件,则目标函数z=2x-y的最小值()A. B.-1 C.0 D.29.长方体,,,,则异面直线与所成角的余弦值为A. B. C. D.10.在ΔABC中,角A、B、C所对的边分别为a、b、c,A=45°,B=30°,b=2,则a=()A.2 B.63 C.22二、填空题:本大题共6小题,每小题5分,共30分。11.数列满足,,,则数列的通项公式______.12.已知向量(1,x2),(﹣2,y2﹣2),若向量,共线,则xy的最大值为_____.13.已知三棱柱的侧棱与底面边长都相等,在底面内的射影为的中心,则与底面所成角的正弦值等于.14.已知腰长为的等腰直角△中,为斜边的中点,点为该平面内一动点,若,则的最小值________.15.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.16.已知l,m是平面外的两条不同直线.给出下列三个论断:①l⊥m;②m∥;③l⊥.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆圆心坐标为点为坐标原点,轴、轴被圆截得的弦分别为、.(1)证明:的面积为定值;(2)设直线与圆交于两点,若,求圆的方程.18.的内角的对边分别为.(1)求证:;(2)在边上取一点P,若.求证:.19.已知函数,其中数列是公比为的等比数列,数列是公差为的等差数列.(1)若,,分别写出数列和数列的通项公式;(2)若是奇函数,且,求;(3)若函数的图像关于点对称,且当时,函数取得最小值,求的最小值.20.已知函数.(1)求的最小正周期和上的单调增区间:(2)若对任意的和恒成立,求实数的取值范围.21.正项数列的前项和满足.(I)求的值;(II)证明:当,且时,;(III)若对于任意的正整数,都有成立,求实数的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
由题意,以点为坐标原点,方向为轴正方向,方向为轴正方向,建立平面直角坐标系,得到,,以及直线的方程,设出点E坐标,根据向量数量积,直接计算,即可得出结果.【详解】如图,以点为坐标原点,方向为轴正方向,方向为轴正方向,建立平面直角坐标系,因为等边三角形的边长为1,所以,,,,则直线的方程为,整理得,因为E为线段AC上一动点,设,,则,,所以,因为,所以在上单调递减,在上单调递增,所以的最小值为,最大值为.即的取值范围为.故选B【点睛】本题主要考查平面向量的数量积,利用建立坐标系的方法求解即可,属于常考题型.2、C【解析】
A中,根据线性回归直线方程中回归系数0.82>0,判断x,y之间呈正相关关系;B中,利用回归方程计算x=5时的值即可预测结果;C中,计算、,代入回归直线方程求得m的值;D中,由题意知m=1.8时求出、,可得回归直线方程过点(,).【详解】已知线性回归直线方程为0.82x+1.27,0.82>0,所以变量x,y之间呈正相关关系,A正确;计算x=5时,0.82×5+1.27=5.37,即预测当x=5时y=5.37,B正确;(0+1+2+3)=1.5,(0.8+m+3.1+4.3),代入回归直线方程得0.82×1.5+1.27,解得m=1.8,∴C错误;由题意知m=1.8时,1.5,2.5,所以回归直线方程过点(1.5,2.5),D正确.故选C.【点睛】本题考查了线性回归方程的概念与应用问题,是基础题.3、A【解析】
.故选A.【点睛】考查向量数乘和加法的几何意义,向量加法的运算.4、B【解析】
根据题意,得到数列为等差数列,通过首项和公差,得到通项.【详解】因为数列只有5项,分别是3,5,7,9,11,所以是以为首项,为公差的等差数列,.故选:B.【点睛】本题考查求等差数列的通项,属于简单题.5、B【解析】
根据题干得到,存在满足该条件的使得不等式成立,即,再根据均值不等式得到最小值为9,再由二次不等式的解法得到结果.【详解】点在直线上,故得到,存在满足该条件的使得不等式成立,即故原题转化为故答案为:B【点睛】本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.解决二元的范围或者最值问题,常用的方法有:不等式的应用,二元化一元的应用,线性规划的应用,等.6、A【解析】
试题分析:利用余弦定理求出正方形面积;利用三角形知识得出四个等腰三角形面积;故八边形面积.故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式求出个三角形的面积;接下来利用余弦定理可求出正方形的边长的平方,进而得到正方形的面积,最后得到答案.7、D【解析】
由扇形的弧长公式列方程得解.【详解】设扇形的半径是,由扇形的弧长公式得:,解得:故选D【点睛】本题主要考查了扇形的弧长公式,考查了方程思想,属于基础题.8、A【解析】
线性规划问题,首先画出可行域,再令z=0,画出目标函数,上下平移得到z的最值。【详解】可行域如图所示,当目标函数平移到A点时z取最小值,故选A【点睛】线性规划中线性的目标函数问题,首先画出可行域,再令z=0,画出目标函数,上下平移得到z的最值。9、A【解析】
由题,找出,故(或其补角)为异面直线与所成角,然后解出答案即可.【详解】如图,连接,由,(或其补角)为异面直线与所成角,由已知可得,则..即异面直线与所成角的余弦值为.故选A.【点睛】本题考查了异面直线的夹角问题,找平行线,找出夹角是解题的关键,属于较为基础题.10、C【解析】
利用正弦定理得到答案.【详解】asin故答案选C【点睛】本题考查了正弦定理,意在考查学生的计算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由题意得出,利用累加法可求出.【详解】数列满足,,,,因此,.故答案为:.【点睛】本题考查利用累加法求数列的通项,解题时要注意累加法对数列递推公式的要求,考查计算能力,属于中等题.12、【解析】
由题意利用两个向量共线的性质,两个向量坐标形式的运算,可得,再利用基本不等式,求得的最大值.【详解】向量,,若向量,共线,则,,即,当且仅当,时,取等号.故的最大值为,故答案为:.【点睛】本题主要考查两个向量共线的性质,考查两个向量坐标形式的运算和基本不等式,属于基础题.13、【解析】试题分析:由题意得,不妨设棱长为,如图,在底面内的射影为的中心,故,由勾股定理得,过作平面,则为与底面所成角,且,作于中点,所以,所以,所以与底面所成角的正弦值为.考点:直线与平面所成的角.14、【解析】
如图建立平面直角坐标系,∴,当sin时,得到最小值为,故选.15、1【解析】应从丙种型号的产品中抽取件,故答案为1.点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即ni∶Ni=n∶N.16、如果l⊥α,m∥α,则l⊥m或如果l⊥α,l⊥m,则m∥α.【解析】
将所给论断,分别作为条件、结论加以分析.【详解】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l⊥α,m∥α,则l⊥m.正确;(2)如果l⊥α,l⊥m,则m∥α.正确;(3)如果l⊥m,m∥α,则l⊥α.不正确,有可能l与α斜交、l∥α.【点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】
(1)利用几何条件可知,为直角三角形,且圆过原点,所以得知三角形两直角边边长,求得面积;(2)由及原点O在圆上,知OCMN,所以,求出的值,再利用直线与圆的位置关系判断检验,符合题意的解,最后写出圆的方程.【详解】(1)因为轴、轴被圆截得的弦分别为、,所以经过,又为中点,所以,所以,所以的面积为定值.(2)因为直线与圆交于两点,,所以的中垂线经过,且过,所以的方程,所以,所以当时,有圆心,半径,所以圆心到直线的距离为,所以直线与圆交于点两点,故成立;当时,有圆心,半径,所以圆心到直线的距离为,所以直线与圆不相交,故(舍去),综上所述,圆的方程为.【点睛】本题通过直线与圆的有关知识,考查学生直观想象和逻辑推理能力.解题注意几何条件的运用可以简化运算.18、(1)详见解析;(2)详见解析.【解析】
(1)余弦定理的证明其实在课本就直接给出过它向量方法的证明,通过,等向量模长相等就可,当然我们还可以通过坐标的运算完成(如方法二)(2)通过点P,将三角形分割,这种题中多注意几个相等(公共边相等,)我们可以得到相对应的等量关系,完成本题.【详解】(1)证法一:如图,即证法二:已知中所对边分别为,以为原点,所在直线为轴建立直角坐标系,则,所以(2)令,由余弦定理得:,因为所以所以所以【点睛】(1)向量既有大小又有方向.在几何中是一种很重要的工具,比如三角形中,三边有大小,角度问题我们可以转化为向量夹角相关,所以很容易想到向量方法.(2)解组合三角形问题,多注重图形中一些恒等关系比如边长、角度问题.19、(1),;(2);(3)1【解析】
(1)根据等差数列、等比数列的通项公式即可求解;(2)根据奇函数的定义得出,化简得,解方程可得(3)将化成的形式,依题意有,从而得到,因为当时,函数取得最小值,所以,两式相减即可求解.【详解】(1)由等差数列、等比数列的通项公式可得,;(2)因为,所以即,所以又由,得(3)记,则,其中;因为的图像关于点对称,所以①因为当时,函数取得最小值,所以②②-①得,因为,当,时,取得最小值为0【点睛】本题主要考查了等差数列、等比数列的通项公式的求法、三角函数的化简以及正弦型函数图像的性质,考查较全面,属于难题.20、(1)T=π,单调增区间为,(2)【解析】
(1)化简函数得到,再计算周期和单调区间.(2)分情况的不同奇偶性讨论,根据函数的最值得到答案.【详解】解:(1)函数故的最小正周期.由题意可知:,解得:,因为,所以的单调增区间为,(2)由(1)得∵∴,∴,若对任意的和恒成立,则的最小值大于零.当为偶数时,,所以,当为奇数时,,所以,综上所述,的范围为.【点睛】本题考查了三角函数化简,周期,单调性,恒成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汽车使用与维护 课件 1.4.2 汽车巡航功能
- 2025年电冰柜项目可行性研究报告
- 2025年珠链石英表项目可行性研究报告
- 2025年猫仔硬糖项目可行性研究报告
- 低压电器 课件 单元一 项目一 认识安全用电
- 江苏省常州市重点达标名校2025年秋初三(下)期末测试卷语文试题含解析
- 南宁学院《结构可靠度理论及其应用》2023-2024学年第二学期期末试卷
- 西藏民族大学《电子系统信号完整性和热管理》2023-2024学年第二学期期末试卷
- 山西省大同矿区六校联考2025年初三下学期期末教学质量检测试题化学试题含解析
- 山东省济宁市嘉祥一中2025年高三教学质量检查物理试题含解析
- 颈心综合征的临床特征
- 材料的性能与规划 课件-2024-2025学年高中技术苏教版(2019)必修《技术与设计1》
- 《1.1.1反应热焓变》好题精练
- 多物理场模拟仿真
- 绿化工程售后服务方案
- 边缘计算项目可行性报告
- 回填灌浆和围岩固结灌浆简介
- 给孩子一生的安全感阅读记录
- 2024年电力市场居间服务合同模板
- 铁路技规(全-上传)
- 《学术规范与论文写作》课程教学大纲(本科)
评论
0/150
提交评论