版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届上海市黄埔区大境中学高一数学第二学期期末教学质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.圆和圆的公切线条数为()A.1 B.2 C.3 D.42.若三棱锥的四个面都为直角三角形,平面,,,则三棱锥中最长的棱长为()A. B. C. D.3.在中,分别为角的对边,若的面积为,则的值为()A. B. C. D.4.将所有的正奇数按以下规律分组,第一组:1;第二组:3,5,7;第三组:9,11,13,15,17;…表示n是第i组的第j个数,例如,,则()A. B. C. D.5.对具有线性相关关系的变量,有观测数据,已知它们之间的线性回归方程是,若,则()A. B. C. D.6.已知,且,则()A. B. C. D.7.设函数是定义在上的奇函数,当时,,则()A.-4 B. C. D.8.直线x+2y﹣3=0与直线2x+ay﹣1=0垂直,则a的值为()A.﹣1 B.4 C.1 D.﹣49.不等式的解集是()A. B. C. D.10.直线的斜率是()A. B.13 C.0 D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,,,点为延长线上一点,,连接,则=______.12.已知正三角形的边长是2,点为边上的高所在直线上的任意一点,为射线上一点,且.则的取值范围是____13.函数的定义域为_________.14.设为虚数单位,复数的模为______.15._______________。16.已知方程的四个根组成一个首项为的等差数列,则_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的各项均不为零.设数列的前项和为,数列的前项和为,且,.(Ⅰ)求,的值;(Ⅱ)证明数列是等比数列,并求的通项公式;(Ⅲ)证明:.18.已知直线的方程为.(1)求直线所过定点的坐标;(2)当时,求点关于直线的对称点的坐标;(3)为使直线不过第四象限,求实数的取值范围.19.在“新零售”模式的背景下,某大型零售公司推广线下分店,计划在S市的A区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记x表示在各区开设分店的个数,y表示这个x个分店的年收入之和.(1)该公司已经过初步判断,可用线性回归模型拟合y与x的关系,求y关于x的线性回归方程(2)假设该公司在A区获得的总年利润z(单位:百万元)与x,y之间的关系为,请结合(1)中的线性回归方程,估算该公司应在A区开设多少个分店时,才能使A区平均每个分店的年利润最大?(参考公式:,其中,)20.三个内角A,B,C对应的三条边长分别是,且满足.(1)求角的大小;(2)若,,求.21.已知函数是指数函数.(1)求的表达式;(2)判断的奇偶性,并加以证明(3)解不等式:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
判断两圆的位置关系,根据两圆的位置关系判断两圆公切线的条数.【详解】圆的标准方程为,圆心坐标为,半径长为.圆的标准方程为,圆心坐标为,半径长为.圆心距为,由于,即,所以,两圆相交,公切线的条数为,故选B.【点睛】本题考查两圆公切线的条数,本质上就是判断两圆的位置关系,公切线条数与两圆位置的关系如下:①两圆相离条公切线;②两圆外切条公切线;③两圆相交条公切线;④两圆内切条公切线;⑤两圆内含没有公切线.2、B【解析】
根据题意,画出满足题意的三棱锥,求解棱长即可.【详解】因为平面,故,且,则为直角三角形,由以及勾股定理得:;同理,因为则为直角三角形,由,以及勾股定理得:;在保证和均为直角三角形的情况下,①若,则在中,由勾股定理得:,此时在中,由,及,不满足勾股定理故当时,无法保证为直角三角形.不满足题意.②若,则,又因为面ABC,面ABC,则,故面PAB,又面PAB,故,则此时可以保证也为直角三角形.满足题意.③若,在直角三角形BCA中,斜边AB=2,小于直角边AC=,显然不成立.综上所述:当且仅当时,可以保证四棱锥的四个面均为直角三角形,故作图如下:由已知和勾股定理可得:,显然,最长的棱为.故选:B.【点睛】本题表面考查几何体的性质,以及棱长的计算,涉及线面垂直问题,需灵活应用.3、B【解析】试题分析:由已知条件及三角形面积计算公式得由余弦定理得考点:考查三角形面积计算公式及余弦定理.4、C【解析】
由等差数列求和公式及进行简单的合情推理可得:2019为第1010个正奇数,设2019在第n组中,则有,,解得:n=32,又前31组共有961个奇数,则2019为第32组的第1010-961=49个数,得解.【详解】由已知有第n组有2n-1个连续的奇数,则前n组共有个连续的奇数,又2019为第1010个正奇数,设2019在第n组中,则有,,解得:n=32,又前31组共有961个奇数,则2019为第32组的第1010-961=49个数,即2019=(32,49),故选:C.【点睛】本题考查归纳推理,解题的关键是根据等差数列求和公式分析出规律,再结合数列的性质求解,属于中等题.5、A【解析】
先求出,再由线性回归直线通过样本中心点即可求出.【详解】由题意,,因为线性回归直线通过样本中心点,将代入可得,所以.故选:A.【点睛】本题主要考查线性回归直线通过样本中心点这一知识点的应用,属常规考题.6、D【解析】
根据不等式的性质,一一分析选择正误即可.【详解】根据不等式的性质,当时,对于A,若,则,故A错误;对于B,若,则,故B错误;对于C,若,则,故C错误;对于D,当时,总有成立,故D正确;故选:D.【点睛】本题考查不等式的基本性质,属于基础题.7、A【解析】
由奇函数的性质可得:即可求出【详解】因为是定义在上的奇函数,所以又因为当时,,所以,所以,选A.【点睛】本题主要考查了函数的性质中的奇偶性。其中奇函数主要有以下几点性质:1、图形关于原点对称。2、在定义域上满足。3、若定义域包含0,一定有。8、A【解析】
由两直线垂直的条件,列出方程即可求解,得到答案.【详解】由题意,直线与直线垂直,则满足,解得,故选:A.【点睛】本题主要考查了两直线位置关系的应用,其中解答中熟记两直线垂直的条件是解答的关键,着重考查了推理与运算能力,属于基础题.9、A【解析】
分解因式,即可求得.【详解】进行分解因式可得:,故不等式解集为:故选:A.【点睛】本题考查一元二次不等式的求解,属基础知识题.10、A【解析】
由题得即得直线的斜率得解.【详解】由题得,所以直线的斜率为.故选:A【点睛】本题主要考查直线的斜率的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】
由题意,画出几何图形.由三线合一可求得,根据补角关系可求得.再结合余弦定理即可求得.【详解】在中,,作,如下图所示:由三线合一可知为中点则所以点为延长线上一点,则在中由余弦定理可得所以故答案为:【点睛】本题考查了等腰三角形性质,余弦定理在解三角形中的应用,属于基础题.12、【解析】
以AB所在的直线为x轴,以AB的中点为坐标原点,AB的垂线为y轴,建立平面直角坐标系,求出A.C,P,Q的坐标,运用平面向量的坐标表示和性质,求出的表达式,利用判别式法求出的取值范围.【详解】以AB所在的直线为x轴,以AB的中点为坐标原点,AB的垂线为y轴,建立平面直角坐标系,如下图所示:,设,,设,可得,由,可得即,,令,可得,当时,成立,当时,,即,,即,所以的取值范围是.【点睛】本题考查了平面向量数量积的性质和运算,考查了平面向量模的取值范围,构造函数,利用判别式法求函数的最值是解题的关键.13、【解析】
根据对数函数的真数大于0,列出不等式求解集即可.【详解】对数函数f(x)=log2(x﹣1)中,x﹣1>0,解得x>1;∴f(x)的定义域为(1,+∞).故答案为:(1,+∞).【点睛】本题考查了求对数函数的定义域问题,是基础题.14、5【解析】
利用复数代数形式的乘法运算化简,然后代入复数模的公式,即可求得答案.【详解】由题意,复数,则复数的模为.故答案为5【点睛】本题主要考查了复数的乘法运算,以及复数模的计算,其中熟记复数的运算法则,和复数模的公式是解答的关键,着重考查了推理与运算能力,属于基础题.15、【解析】
本题首先可根据同角三角函数关系式化简得出,然后根据两角差的正弦公式化简得出,最后根据二倍角公式以及三角函数诱导公式即可得出结果。【详解】,故答案为【点睛】本题考查根据三角函数相关公式进行化简求值,考查到的公式有、、以及,考查化归与转化思想,是中档题。16、【解析】
把方程(x2﹣2x+m)(x2﹣2x+n)=0化为x2﹣2x+m=0,或x2﹣2x+n=0,设是第一个方程的根,代入方程即可求得m,则方程的另一个根可求;设另一个方程的根为s,t,(s≤t)根据韦达定理可知∴s+t=2根据等差中项的性质可知四个跟成的等差数列为,s,t,,进而根据数列的第一项和第四项求得公差,则s和t可求,进而根据韦达定理求得n,最后代入|m﹣n|即可.【详解】方程(x2﹣2x+m)(x2﹣2x+n)=0可化为x2﹣2x+m=0①,或x2﹣2x+n=0②,设是方程①的根,则将代入方程①,可解得m,∴方程①的另一个根为.设方程②的另一个根为s,t,(s≤t)则由根与系数的关系知,s+t=2,st=n,又方程①的两根之和也是2,∴s+t由等差数列中的项的性质可知,此等差数列为,s,t,,公差为[]÷3,∴s,t,∴n=st∴|m﹣n|=||.故答案为【点睛】本题主要考查了等差数列的性质.考查了学生创造性思维和解决问题的能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)2,4;(Ⅱ)证明见解析,;(Ⅲ)证明见解析.【解析】
(Ⅰ)直接给n赋值求出,的值;(Ⅱ)利用项和公式化简,再利用定义法证明数列是等比数列,即得等比数列的通项公式;(Ⅲ)由(Ⅱ)知,再利用等比数列求和证明不等式.【详解】(Ⅰ),令,得,,;令,得,即,,.证明:(Ⅱ),①,②②①得:,,,从而当时,,④③④得:,即,,.又由(Ⅰ)知,,,.数列是以2为首项,以为公比的等比数列,则.(Ⅲ)由(Ⅱ)知,因为当时,,所以.于是.【点睛】本题主要考查等比数列性质的证明和通项的求法,考查等比数列求和和放缩法证明不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.18、(1);(2);(3)【解析】
(1)把直线化简为,所以直线过定点(1,1);(2)设B点坐标为,利用轴对称的性质列方程可以解得;(3)把直线化简为,由直线不过第四象限,得,解出即可.【详解】(1)直线的方程化简为,点满足方程,故直线所过定点的坐标为.(2)当时,直线的方程为,设点的坐标为,列方程组解得:,,故点关于直线的对称点的坐标为,(3)把直线方程化简为,由直线不过第四象限,得,解得,即的取值范围是.【点睛】本题考查直线方程过定点,以及点关于直线对称的问题,直线斜截式方程的应用,属于基础题.19、(1);(2)该公司应开设4个分店时,在该区的每个分店的平均利润最大【解析】
(1)由表中数据先求得.再结合公式分别求得,即可得y关于x的线性回归方程.(2)将(1)中所得结果代入中,进而表示出每个分店的平均利润,结合基本不等式即可求得最值及取最值时自变量的值.【详解】(1)由表中数据和参考数据得:,,因而可得,,再代入公式计算可知,∴,∴.(2)由题意,可知总收入的预报值与x之间的关系为:,设该区每个分店的平均利润为t,则,故t的预报值与x之间的关系为,当且仅当时取等号,即或(舍)则当时,取到最大值,故该公司应开设4个分店时,在该区的每个分店的平均利润最大.【点睛】本题考查了线性回归方程的求法,基本不等式求函数的最值及等号成立的条件,属于基础题.20、⑴(2)【解析】
⑴由正弦定理及,得,因为,所以;⑵由余弦定理,解得【详解】⑴由正弦定理得,由已知得,,因为,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度二手房屋买卖合同标的评估报告服务协议2篇
- 2024年度汽车制造行业专用润滑油供货协议2篇
- 2024年梦想之桥:融资合作协议书
- 二零二四年度隧道工程防水施工及材料供应合同3篇
- 2024年专业品牌形象设计合作协议2篇
- 2024年跨国销售合同与信用担保条款3篇
- 2024年度软件开发项目合同标的执行与维护具体条款2篇
- 墙体材料供应与施工2024合同
- 2024年度医疗机构供水设施建设与改造合同
- 2024年茶饮店加盟合同:全新概念3篇
- 2022版新课标初中数学《数与代数、图形与几何》解读
- 美育的知与行智慧树知到期末考试答案2024年
- 新疆乌鲁木齐高级中学2023-2024学年高一年级上册期中考试化学试卷
- 手术室外麻醉的课件
- 2024房颤抗凝治疗
- 桂花大道延伸段道路工程第一标段施工用电规划方案样本
- 甲状腺消融术护理查房
- 人工智能大学生生涯规划
- 研发部门未来五年发展规划方案
- 2023年亏损企业扭亏专项治理方案
- 人教版小学三年级语文课外阅读理解精练试题全册
评论
0/150
提交评论