版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省保定一中数学高一下期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.平面直角坐标系中,O为坐标原点,点A,B的坐标分别为(1,1),(-3,3).若动点P满足,其中λ,μ∈R,且λ+μ=1,则点P的轨迹方程为()A. B. C. D.2.执行如图所示的程序框图,若输入,则输出()A.5 B.8 C.13 D.213.已知直线,平面,且,下列条件中能推出的是()A. B. C. D.与相交4.已知数列的通项公式是,则等于()A.70 B.28 C.20 D.85.已知数列满足递推关系,则()A. B. C. D.6.若直线:与直线:平行,则的值为()A.1 B.1或2 C.-2 D.1或-27.若关于的不等式在区间上有解,则的取值范围是()A. B. C. D.8.已知的三个内角所对的边为,面积为,且,则等于()A. B. C. D.9.黄金分割比是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为,约为0.618,这一比值也可以表示为a=2cos72°,则=()A. B.1 C.2 D.10.下列说法错误的是()A.若样本的平均数为5,标准差为1,则样本的平均数为11,标准差为2B.身高和体重具有相关关系C.现有高一学生30名,高二学生40名,高三学生30名,若按分层抽样从中抽取20名学生,则抽取高三学生6名D.两个变量间的线性相关性越强,则相关系数的值越大二、填空题:本大题共6小题,每小题5分,共30分。11.己知中,角所対的辻分別是.若,=,,则=______.12.对任意实数,不等式恒成立,则实数的取值范围是____.13.分形几何学是美籍法国数学家伯努瓦.B.曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路,下图是按照一定的分形规律生长成一个数形图,则第13行的实心圆点的个数是________14.函数的部分图像如图所示,则的值为________.15.甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为________.16.已知,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角A,B,C所对的边分别为a,b,c,.(1)求角C;(2)若,,求的面积.18.设等差数列的公差为d,前项和为,等比数列的公比为.已知,,,.(1)求数列,的通项公式;(2)当时,记,求数列的前项和.19.已知数列的前项和为,对任意满足,且,数列满足,,其前9项和为63.(1)求数列和的通项公式;(2)令,数列的前项和为,若存在正整数,有,求实数的取值范围;(3)将数列,的项按照“当为奇数时,放在前面;当为偶数时,放在前面”的要求进行“交叉排列”,得到一个新的数列:…,求这个新数列的前项和.20.驻马店市政府委托市电视台进行“创建森林城市”知识问答活动,市电视台随机对该市15~65岁的人群抽取了n人,绘制出如图1所示的频率分布直方图,回答问题的统计结果如表2所示.(1)分别求出a,b,x,y的值;(2)从第二、三、四、五组回答正确的人中用分层抽样的方法抽取7人,则从第二、三、四、五组每组回答正确的人中应各抽取多少人?(3)在(2)的条件下,电视台决定在所抽取的7人中随机选2人颁发幸运奖,求所抽取的人中第二组至少有1人获得幸运奖的概率.21.如图,等边所在的平面与菱形所在的平面垂直,分别是的中点.(1)求证:平面;(2)若,,求三棱锥的体积
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
设点坐标,代入,得到即,再根据,即可求解.【详解】设点坐标,因为点的坐标分别为,将各点坐标代入,可得,即,解得,代入,化简得,故选C.【点睛】本题主要考查了平面向量的坐标运算和点的轨迹的求解,其中解答中熟记向量的坐标运算,以及平面向量的基本定理是解答的关键,着重考查了推理运算能力,属于基础题.2、C【解析】
通过程序一步步分析得到结果,从而得到输出结果.【详解】开始:,执行程序:;;;;,执行“否”,输出的值为13,故选C.【点睛】本题主要考查算法框图的输出结果,意在考查学生的分析能力及计算能力,难度不大.3、C【解析】
根据线面垂直的性质,逐项判断即可得出结果.【详解】A中,若,由,可得;故A不满足题意;B中,若,由,可得;故B不满足题意;C中,若,由,可得;故C正确;D中,若与相交,由,可得异面或平,故D不满足题意.故选C【点睛】本题主要考查线面垂直的性质,熟记线面垂直的性质定理即可,属于常考题型.4、C【解析】
因为,所以,所以=20.故选C.5、B【解析】
两边取倒数,可得新的等差数列,根据等差数列的通项公式,可得结果.【详解】由,所以则,又,所以所以数列是以2为首项,1为公比的等差数列所以,则所以故选:B【点睛】本题主要考查由递推公式得到等差数列,难点在于取倒数,学会观察,属基础题.6、A【解析】试题分析:因为直线:与直线:平行,所以或-2,又时两直线重合,所以.考点:两条直线平行的条件.点评:此题是易错题,容易选C,其原因是忽略了两条直线重合的验证.7、A【解析】
利用分离常数法得出不等式在上成立,根据函数在上的单调性,求出的取值范围【详解】关于的不等式在区间上有解在上有解即在上成立,设函数数,恒成立在上是单调减函数且的值域为要在上有解,则即的取值范围是故选【点睛】本题是一道关于一元二次不等式的题目,解题的关键是掌握一元二次不等式的解法,分离含参量,然后求出结果,属于基础题.8、C【解析】
利用三角形面积公式可得,结合正弦定理及三角恒等变换知识可得,从而得到角A.【详解】∵∴即∴∴∴,∴(舍)∴故选C【点睛】此题考查了正弦定理、三角形面积公式,以及三角恒等变换,熟练掌握边角的转化是解本题的关键.9、A【解析】
根据已知利用同角三角函数基本关系式,二倍角公式、诱导公式化简即可求值得解.【详解】∵a=2cos72°,∴a2=4cos272°,可得:4﹣a2=4﹣4cos272°=4sin272°,∴2sin72°,a2cos72°•2sin72°=2sin144°=2sin36°,∴.故选:A.【点睛】本题主要考查了同角三角函数基本关系式,二倍角公式、诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.10、D【解析】
利用平均数和方差的定义,根据线性回归的有关知识和分层抽样原理,即可判断出答案.【详解】对于A:若样本的平均数为5,标准差为1,则样本的平均数2×5+1=11,标准差为2×1=2,故正确对于B:身高和体重具有相关关系,故正确对于C:高三学生占总人数的比例为:所以抽取20名学生中高三学生有名,故正确对于D:两个变量间的线性相关性越强,应是相关系数的绝对值越大,故错误故选:D【点睛】本题考查了线性回归的有关知识,以及平均数和方差、分层抽样原理的应用问题,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】
应用余弦定理得出,再结合已知等式配出即可.【详解】∵,即,∴,①又由余弦定理得,②,②-①得,∴,∴.故答案为1.【点睛】本题考查余弦定理,掌握余弦定理是解题关键,解题时不需要求出的值,而是用整体配凑的方法得出配凑出,这样可减少计算.12、【解析】
分别在和两种情况下进行讨论,当时,根据二次函数图像可得不等式组,从而求得结果.【详解】①当,即时,不等式为:,恒成立,则满足题意②当,即时,不等式恒成立则需:解得:综上所述:本题正确结果:【点睛】本题考查不等式恒成立问题的求解,易错点是忽略不等式是否为一元二次不等式,造成丢根;处理一元二次不等式恒成立问题的关键是结合二次函数图象来得到不等关系,属于常考题型.13、【解析】
观察图像可知每一个实心圆点的下一行均分为一个实心圆点与一个空心圆点,每个空心圆点下一行均为实心圆点.再利用规律找到行与行之间的递推关系即可.【详解】由图像可得每一个实心圆点的下一行均分为一个实心圆点与一个空心圆点,每个空心圆点下一行均为实心圆点.故从第三行开始,每行的实心圆点数均为前两行之和.即.故第1到第13行中实心圆点的个数分别为:.故答案为:【点睛】本题主要考查了递推数列的实际运用,需要观察求得行与行之间的实心圆点的递推关系,属于中等题型.14、【解析】
由图可得,,求出,得出,利用,然后化简即可求解【详解】由题图知,,所以,所以.由正弦函数的对称性知,所以答案:【点睛】本题利用函数的周期特性求解,难点在于通过图像求出函数的解析式和函数的最小正周期,属于基础题15、【解析】甲、乙两人下棋,只有三种结果,甲获胜,乙获胜,和棋;甲不输,即甲获胜或和棋,甲不输的概率为16、【解析】
由题意得出,然后在分式的分子和分母中同时除以,然后利用常见的数列极限可计算出所求极限值.【详解】由题意得出.故答案为:.【点睛】本题考查数列极限的计算,熟悉一些常见数列极限是解题的关键,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)利用正弦定理进行边化角,然后得到的值,从而得到;(2)根据余弦定理,得到关于的方程,从而得到,再根据面积公式,得到答案.【详解】(1)在中,根据正弦定理,由,可得,所以,因为为内角,所以,所以因为为内角,所以,(2)在中,,,由余弦定理得解得,所以.【点睛】本题考查正弦定理、余弦定理解三角形,三角形面积公式,属于简单题.18、(1)见解析(2)【解析】
(1)利用前10项和与首项、公差的关系,联立方程组计算即可;(2)当d>1时,由(1)知cn,写出Tn、Tn的表达式,利用错位相减法及等比数列的求和公式,计算即可.【详解】解:(1)设a1=a,由题意可得,解得,或,当时,an=2n﹣1,bn=2n﹣1;当时,an(2n+79),bn=9•;(2)当d>1时,由(1)知an=2n﹣1,bn=2n﹣1,∴cn,∴Tn=1+3•5•7•9•(2n﹣1)•,∴Tn=1•3•5•7•(2n﹣3)•(2n﹣1)•,∴Tn=2(2n﹣1)•3,∴Tn=6.【点睛】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.19、(1);(2);(3)【解析】试题分析:(1)由已知得数列是等差数列,从而易得,也即得,利用求得,再求得可得数列通项,利用已知可得是等差数列,由等差数列的基本量法可求得;(2)代入得,变形后得,从而易求得和,于是有,只要求得的最大值即可得的最小值,从而得的范围,研究的单调性可得;(3)根据新数列的构造方法,在求新数列的前项和时,对分类:,和三类,可求解.试题解析:(1)∵,∴数列是首项为1,公差为的等差数列,∴,即,∴,又,∴.∵,∴数列是等差数列,设的前项和为,∵且,∴,∴的公差为(2)由(1)知,∴,∴设,则,∴数列为递增数列,∴,∵对任意正整数,都有恒成立,∴.(3)数列的前项和,数列的前项和,①当时,;②当时,,特别地,当时,也符合上式;③当时,.综上:考点:等差数列的通项公式,数列的单调性,数列的求和.20、(1)0.9,0.36,270,90;(2)2人,3人,1人,1人;(3)1121【解析】
(1)先计算出总人数为1000人,再根据公式依次计算a,b,x,y的值.(2)根据分层抽样规律得到从第二、三、四、五组每组回答正确的人中应分别抽取:2人,3人,1人,1人(3)排出所有可能和满足条件的情况,得到概率.【详解】(1)依题和图表:由0.010×10×n=500.5得:由0.020×10×n=180a得:由0.030×10×n=x0.9得:由0.025×10×n=90b得:由0.015×10×n=y0.6得:故所求a=0.9,b=0.36,x=270,y=90.(2)由以上知:第二、三、四、五组回答正确的人数分别为:180人,270人,90人,90人用分层抽样抽取7人,则:从第二组回答正确的人中应该抽取:7×180从第三组回答正确的人中应该抽取:7×270从第四组回答正确的人中应该抽取:7×90从第五组回答正确的人中应该抽取:7×90故从第二、三、四、五组每组回答正确的人中应分别抽取:2人,3人,1人,1人;(3)设从第二组回答正确的人抽取的2人为:2a,2b,从第三组回答正确的人抽取的3人为:3a,3b,3c从第四组回答正确的人抽取的1人为:4a从第五组回答正确的人抽取的1人为:5a随机抽取2人,所有可能的结果有:(2a,2b),(2a,3a),(2a,3b),(2a,3c),(2a,4a),(2a,5a),(2b,3a),(2b,3b),(2b,3c),(2b,4a),(2b,5a),(3a,3b),(3a,3c),(3a,4a),(3a,5a),(3b,3c),(3b,4a),(3b,5a),(3c,4a),(3c,5a),(4a,5a),共21个基本事件,其中第二组至少有1人被抽中的有:(2a,2b),(2a,3a),(2a,3b),(2a,3c),(2a,4a),(2a,5a),(2b,3a),(2b,3b),(2b,3c),(2b,4a),(2b,5a)共这11个基本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 审计服务结算合同模板
- 智能城市EPC项目管理方案
- 养龟商家合同范例
- 土建开工合同模板
- 学校防溺水监护人员培训方案
- 粮油产品安全追溯方案
- 村镇房屋重建方案
- 草莓产品包装设计方案
- 村里摊位管理方案
- 村里地膜清理方案
- 培训类项目立项评审指标体系
- 【课件】第4课 画外之意-中国传统花鸟画、人物画 课件-2022-2023学年高中美术人教版(2019)美术鉴赏
- 光伏组件支架及太阳能板安装施工方案54298
- 灾难救援现场的检伤分类方法
- 船舶管理知识考核题库与答案
- 《城市设计》2课件
- 通风队岗位说明书XXXX117
- 初中体育与健康人教九年级(2023年修订) 田径初三跨栏教案
- DB13T 5216-2020 建设用地土壤污染风险筛选值
- 教科版科学五年级上册《摆的快慢》学习任务单
- 三年级数学上册课件-8.1分数的初步认识 - 人教版(共15张PPT)
评论
0/150
提交评论