版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省粤西五校联考高一下数学期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若角α的终边过点P(-3,-4),则cos(π-2α)的值为()A. B. C. D.2.方程表示的曲线是()A.一个圆 B.两个圆 C.半个圆 D.两个半圆3.已知,,则()A. B. C. D.4.如图,随机地在图中撒一把豆子,则豆子落到阴影部分的概率是()A.12 B.34 C.15.已知平面向量,,且,则=A. B. C. D.6.已知函数在区间上有最大值,则实数的取值范围是()A. B. C. D.7.若,,表示三条不重合的直线,,表示两个不同的平面,则下列命题中,正确的个数是()①若,,则②,,,则③若,,则④若,,则A.0 B.1 C.2 D.38.要得到函数的图象,只需将函数的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位9.在中,内角所对的边分别是.已知,,,则A. B. C. D.10.若直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,则m的值为()A.7 B.0或7 C.0 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.设Sn为数列{an}的前n项和,若Sn=(-1)nan-,n∈N,则a3=________.12.已知(),则________.(用表示)13.已知一个扇形的周长为4,则扇形面积的最大值为______.14.在矩形中,,现将矩形沿对角线折起,则所得三棱锥外接球的体积是________.15.点与点关于直线对称,则直线的方程为______.16.若,则满足的的取值范围为______________;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知为常数且均不为零,数列的通项公式为并且成等差数列,成等比数列.(1)求的值;(2)设是数列前项的和,求使得不等式成立的最小正整数.18.如图,甲、乙两个企业的用电负荷量关于投产持续时间(单位:小时)的关系均近似地满足函数.(1)根据图象,求函数的解析式;(2)为使任意时刻两企业用电负荷量之和不超过9,现采用错峰用电的方式,让企业乙比企业甲推迟小时投产,求的最小值.19.如图,在四棱锥中,底面为梯形,,平面平面是的中点.(1)求证:平面;(2)若,证明:20.化简求值:(1)化简:(2)求值,已知,求的值21.如图,等腰梯形中,,,,取中点,连接,把三角形沿折起,使得点在底面上的射影落在上,设为的中点.(1)求证:平面;(2)求二面角的余弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由三角函数的定义得,再利用诱导公式以及二倍角余弦公式求解.【详解】由三角函数的定义,可得,则,故选C.【点睛】本题主要考查了三角函数的定义,以及二倍角的余弦公式的应用,着重考查了推理与运算能力,属于基础题.2、D【解析】原方程即即或故原方程表示两个半圆.3、C【解析】
由放缩法可得出,再利用特殊值法以及不等式的基本性质可判断各选项中不等式的正误.【详解】,,可得.取,,,则A、D选项中的不等式不成立;取,,,则B选项中的不等式不成立;且,由不等式的基本性质得,C选项中的不等式成立.故选:C.【点睛】本题考查不等式正误的判断,一般利用不等式的性质或特殊值法进行判断,考查推理能力,属于中等题.4、D【解析】
求出阴影部分的面积,然后与圆面积作比值即得.【详解】圆被8等分,其中阴影部分有3分,因此所求概率为P=3故选D.【点睛】本题考查几何概型,属于基础题.5、B【解析】
根据向量平行求出x的值,结合向量模长的坐标公式进行求解即可.【详解】且,则故故选B.【点睛】本题考查向量模长的计算,根据向量平行的坐标公式求出x的值是解决本题的关键.6、B【解析】因为,所以由题设在只有一个零点且单调递减,则问题转化为,即,应选答案B.点睛:解答本题的关键是如何借助题设条件建立不等式组,这是解答本题的难点,也是解答好本题的突破口,如何通过解不等式使得问题巧妙获解.7、B【解析】
①根据空间线线位置关系的定义判定;②根据面面平行的性质判定;③根据空间线线垂直的定义判定;④根据线面垂直的性质判定.【详解】解:①若,,与的位置关系不定,故错;②若,,,则或、异面,故错;③若,,则或、异面,故错;④若,,则,故正确.故选:.【点睛】本题考查了空间线面位置关系,考查了空间想象能力,属于中档题.8、D【解析】
直接根据三角函数的图象平移规则得出正确的结论即可;【详解】解:函数,要得到函数的图象,只需将函数的图象向左平移个单位.故选:D.【点睛】本题考查三角函数图象平移的应用问题,属于基础题.9、B【解析】
由已知三边,利用余弦定理可得,结合,为锐角,可得,利用三角形内角和定理即可求的值.【详解】在中,,,,由余弦定理可得:,,故为锐角,可得,,故选.【点睛】本题主要考查利用余弦定理解三角形以及三角形内角和定理的应用.10、B【解析】
根据直线和直线平行则斜率相等,故m(m-1)=3m×2,求解即可。【详解】∵直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,∴m(m-1)=3m×2,∴m=0或7,经检验,都符合题意,故选B.【点睛】本题属于基础题,利用直线的平行关系,斜率相等求解参数。二、填空题:本大题共6小题,每小题5分,共30分。11、-【解析】当n=3时,S3=a1+a2+a3=-a3-,则a1+a2+2a3=-,当n=4时,S4=a1+a2+a3+a4=a4-,两式相减得a3=-.12、【解析】
根据同角三角函数之间的关系,结合角所在的象限,即可求解.【详解】因为,所以,故,解得,又,,所以.故填.【点睛】本题主要考查了同角三角函数之间的关系,三角函数在各象限的符号,属于中档题.13、1【解析】
表示出扇形的面积,利用二次函数的单调性即可得出.【详解】设扇形的半径为,圆心角为,则弧长,,即,该扇形的面积,当且仅当时取等号.该扇形的面积的最大值为.故答案:.【点睛】本题考查了弧长公式与扇形的面积计算公式、二次函数的单调性,考查了计算能力,属于基础题.14、【解析】
取的中点,连接,三棱锥外接球的半径再计算体积.【详解】如图,取的中点,连接.由题意可得,则所得三棱锥外接球的半径,其体积为.故答案为【点睛】本题考查了三棱锥的外切球体积,计算是解题的关键.15、【解析】
根据和关于直线对称可得直线和直线垂直且中点在直线上,从而可求得直线的斜率,利用点斜式可得直线方程.【详解】由,得:且中点坐标为和关于直线对称且在上的方程为:,即:本题正确结果:【点睛】本题考查根据两点关于直线对称求解直线方程的问题,关键是明确两点关于直线对称则连线与对称轴垂直,且中点必在对称轴上,属于常考题型.16、【解析】
本题首先可确定在区间上所对应的的值,然后可结合正弦函数图像得出不等式的解集.【详解】当时,令,解得或,如图,绘出正弦函数图像,结合函数图像可知,当时,的解集为【点睛】本题考查三角函数不等式的解法,考查对正弦函数性质的理解,考查计算能力,体现了基础性,是简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)由,可得,,,.根据、、成等差数列,、、成等比数列.可得,,代入解出即可得出.(2)由(1)可得:,可得,分别利用等差数列与等比数列的求和公式即可得出.【详解】(1),,,,.,,成等差数列,,,成等比数列.,,,,,.联立解得:,.(2)由(1)可得:,,由,解得..【点睛】本题考查等差数列与等比数列的通项公式与求和公式及其性质、分类讨论方法、不等式的解法,考查推理能力与计算能力,属于中档题.18、(1);(2)4【解析】
(1)由,得,由,得A,b,代入,求得,从而即可得到本题答案;(2)由题,得恒成立,等价于恒成立,然后利用和差公式展开,结合辅助角公式,逐步转化,即可得到本题答案.【详解】(1)解:由图知,又,可得,代入,得,又,所求为(2)设乙投产持续时间为小时,则甲的投产持续时间为小时,由诱导公式,企业乙用电负荷量随持续时间变化的关系式为:同理,企业甲用电负荷量变化关系式为:两企业用电负荷量之和,依题意,有恒成立即恒成立展开有恒成立其中,,,整理得:解得即取得:的最小值为4.【点睛】本题主要考查根据三角函数的图象求出其解析式,以及三角函数的实际应用,主要考查学生的分析问题和解决问题的能力,以及计算能力,难度较大.19、(1)证明见解析,(2)证明见解析【解析】
(1)首先取的中点,连接,.根据已知条件和三角形中位线定理得到,又因为四边形为平行四边形,所以,再利用线面平行的判定即可证明.(2)首先连接,利用线面垂直的判定证明平面,再根据线面垂直的性质即可证明.【详解】(1)取的中点,连接,.因为分别为,的中点,所以.又因为,所以.所以四边形为平行四边形,.又因为平面,所以平面.(2)连接,因为,是的中点,所以.因为平面平面,,所以平面.又因为平面,所以.平面.平面,所以.【点睛】本题第一问考查线面平行的证明,第二问考查利用线面垂直的性质证明线线垂直,属于中档题.20、(1);(2)【解析】
(1)根据诱导公式先化简每一项,然后即可得到最简结果;(2)利用“齐次”式的特点,分子分母同除以,将其化简为关于的形式即可求值.【详解】(1)原式,(2)原式【点睛】本题考查诱导公式和同角三角函数的基本关系的运用,难度较易.(1)利用诱导公式进行化简时,掌握“奇变偶不变”的实际含义进行化简即可;(2)求解形如的“齐次式”的值,注意采用分子分母同除以的方法,将其化简为关于的形式再求值.21、(1)见解析;(2).【解析】
(1)取的中点,取的中点,连接、、、、,可知、均为等边三角形,可证明出平面,从而得出,再证明出四边形为平行四边形,可得出,由等腰三角形三线合一的性质可得,从而可得出,再利用线面垂直的判定定理可证明出平面;(2)过点在平面内作,垂足为点,连接,证明出平面,可得知二面角的平面角为,计算出直角三角形三边边长,即可求出,即为所求.【详解】(1)如下图所示,取的中点,取的中点,连接、、、、,在等腰梯形中,,,,为的中点,所以,,又,则,为等边三角形,同理可知为等边三角形,为的中点,,,,平面,平面,,由于和是边长相等的等边三角形,且为的中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年合作制作:灾害救援记录片委托拍摄合同
- 2024年城市轨道交通建设合同协议书
- 2024年夫妻关系调研合同
- 早教中心合伙经营合同
- 高速公路充电桩场地租赁合同
- 古建筑修复专项施工方案
- 2024年专利许可使用与技术转让合同
- 有限空间作业常见问题及解决方案
- 2024年城市垃圾收集与处理服务合同
- 2024年城市热力管网扩建工程合同
- 医美机构转让合同模板
- 工程项目管理信息化方案
- 带您走进西藏学习通超星期末考试答案章节答案2024年
- 2024-2025学年小学综合实践活动一年级上册沪科黔科版教学设计合集
- 期中测试卷(1-4单元)(试题)-2024-2025学年四年级上册数学人教版
- 2024秋期国家开放大学《行政组织学》一平台在线形考(形考任务1至5)试题及答案
- 采购程序文件资料
- 2024年人力资源和社会保障部全国人才流动中心招聘工作人员6人历年高频难、易错点500题模拟试题附带答案详解
- 人教部编版初中历史八年级上册 第13课 五四运动 教案
- 人教版(2019)高中体育 4.6 紧急避险 教案
- 牛津译林版英语2024七年级上册全册单元知识清单(记忆版)
评论
0/150
提交评论