山东省文登市大水泊中学2023-2024学年高一下数学期末检测试题含解析_第1页
山东省文登市大水泊中学2023-2024学年高一下数学期末检测试题含解析_第2页
山东省文登市大水泊中学2023-2024学年高一下数学期末检测试题含解析_第3页
山东省文登市大水泊中学2023-2024学年高一下数学期末检测试题含解析_第4页
山东省文登市大水泊中学2023-2024学年高一下数学期末检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省文登市大水泊中学2023-2024学年高一下数学期末检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某中学高一从甲、乙两个班中各选出7名学生参加2019年第三十届“希望杯”全国数学邀请赛,他们取得成绩的茎叶图如图,其中甲班学生成绩的平均数是84,乙班学生成绩的中位数是83,则的值为()A.4 B.5 C.6 D.72.在中,角的对边分别为,,且边,则面积的最大值为()A. B. C. D.3.若是两条不同的直线,是三个不同的平面,则下列结论中正确的是()A.若,则 B.若,则C.若,则 D.若,则4.已知三棱柱的侧棱与底面边长都相等,在底面内的射影为的中心,则与底面所成角的正弦值等于()A. B. C. D.5.角的终边落在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.甲:(是常数)乙:丙:(、是常数)丁:(、是常数),以上能成为数列是等差数列的充要条件的有几个()A.1 B.2 C.3 D.47.图1是我国古代数学家赵爽创制的一幅“勾股圆方图”(又称“赵爽弦图”),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.受其启发,某同学设计了一个图形,它是由三个全等的钝角三角形与中间一个小正三角形拼成一个大正三角形,如图2所示,若,,则线段的长为()A.3 B.3.5 C.4 D.4.58.已知,那么()A. B. C. D.9.在中,内角,,的对边分别为,,,若,,,则的最小角为()A. B. C. D.10.已知向量,,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某扇形的面积为1,它的周长为4cm,那么扇形的圆心角的大小为____________.12.据监测,在海滨某城市附近的海面有一台风,台风中心位于城市的南偏东30°方向,距离城市的海面处,并以的速度向北偏西60°方向移动(如图示).如果台风侵袭范围为圆形区域,半径,台风移动的方向与速度不变,那么该城市受台风侵袭的时长为_______小时.13.已知函数的图象关于点对称,记在区间的最大值为,且在()上单调递增,则实数的最小值是__________.14.某产品生产厂家的市场部在对4家商场进行调研时,获得该产品售价(单位:元)和销售量(单位:件)之间的四组数据如下表,为决策产品的市场指导价,用最小二乘法求得销售量与售价之间的线性回归方程,那么方程中的值为___________.售价44.55.56销售量121110915.已知等差数列的前n项和为,若,,,则________16.若x、y满足约束条件,则的最大值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的最小正周期为,将的图象向右平移个单位长度,再向上平移个单位长度得到函数的图象.(1)求函数的解析式;(2)在中,角所对的边分别为,若,且,求周长的取值范围.18.已知{an}是等差数列,设数列{bn}的前n项和为Sn,且2bn=b1(1+Sn),bn≠0,又a2b2=4,a7+b3=1.(1)求{an}和{bn}的通项公式;(2)令cn=anbn(n∈N*),求{cn}的前n项和Tn19.已知函数.(1)求函数的最小正周期;(2)求函数的最小值及相应的值.20.正项数列的前n项和Sn满足:(1)求数列的通项公式;(2)令,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有Tn<.21.设向量.(Ⅰ)若与垂直,求的值;(Ⅱ)求的最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

由均值和中位数定义求解.【详解】由题意,,由茎叶图知就是中位数,∴,∴.故选C.【点睛】本题考查茎叶图,考查均值与中位数,解题关键是读懂茎叶图.2、D【解析】

由已知利用同角三角函数基本关系式可求,根据余弦定理,基本不等式可求的最大值,进而利用三角形面积公式即可求解.【详解】解:,可解得:,由余弦定理,可得,即,当且仅当时成立.等号当时成立.故选D.【点睛】本题主要考查了余弦定理,三角形面积公式的应用,属于基本知识的考查.3、C【解析】

试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A不正确;两个相交平面内的直线也可以平行,所以B不正确;垂直于同一个平面的两个平面不一定垂直,也可能平行或相交,所以D不正确;根据面面垂直的判定定理知C正确.考点:空间直线、平面间的位置关系.【详解】请在此输入详解!4、B【解析】由题意不妨令棱长为,如图在底面内的射影为的中心,故由勾股定理得过作平面,则为与底面所成角,且如图作于中点与底面所成角的正弦值故答案选点睛:本题考查直线与平面所成的角,要先过点作垂线构造出线面角,然后计算出各边长度,在直角三角形中解三角形.5、C【解析】

由,即可判断.【详解】,则与的终边相同,则角的终边落在第三象限故选:C【点睛】本题主要考查了判断角的终边所在象限,属于基础题.6、D【解析】

由等差数列的定义和求和公式、通项公式的关系,以及性质,即可得到结论.【详解】数列是等差数列,设公差为,由定义可得(是常数),且(是常数),,令,即(、是常数),等差数列通项,令,即(、是常数),综上可得甲乙丙丁都对.故选:D.【点睛】本题考查等差数列的定义和通项公式、求和公式的关系,考查充分必要条件的定义,考查推理能力,属于基础题.7、A【解析】

设,可得,求得,在中,运用余弦定理,解方程可得所求值.【详解】设,可得,且,在中,可得,即为,化为,解得舍去),故选.【点睛】本题考查三角形的余弦定理,考查方程思想和运算能力,属于基础题.8、C【解析】试题分析:由,得.故选B.考点:诱导公式.9、A【解析】

由三角形大边对大角可知所求角为角,利用余弦定理可求得,进而得到结果.【详解】的最小角为角,则故选:【点睛】本题考查利用余弦定理解三角形的问题,关键是明确三角形中大边对大角的特点,进而根据余弦定理求得所求角的余弦值.10、D【解析】

利用平面向量垂直的坐标等价条件列等式求出实数的值.【详解】,,,,解得,故选D.【点睛】本题考查向量垂直的坐标表示,解题时将向量垂直转化为两向量的数量积为零来处理,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据扇形的面积和周长列方程组解得半径和弧长,再利用弧长公式可求得结果.【详解】设扇形的半径为,弧长为,圆心角为,则,解得,所以.故答案为:【点睛】本题考查了扇形的面积公式,考查了扇形中弧长公式,属于基础题.12、1【解析】

设台风移动M处的时间为th,则|PM|=20t,利用余弦定理求得AM,而该城市受台风侵袭等价于AM≤60,解此不等式可得.【详解】如图:设台风移动M处的时间为th,则|PM|=20t,依题意可得,在三角形APM中,由余弦定理可得:依题意该城市受台风侵袭等价于AM≤60,即AM2≤602,化简得:,所以该城市受台风侵袭的时间为6﹣1=1小时.故答案为:1.【点睛】本题考查了余弦定理的应用,考查了数学运算能力.13、【解析】,所以,又,得,所以,且求得,又,得单调递增区间为,由题意,当时,。点睛:本题考查三角函数的化简及性质应用。本题首先考查三角函数的辅助角公式应用,并结合对称中心的性质,得到函数解析式。然后考察三角函数的单调性,利用整体思想求出单调区间,求得答案。14、17.5【解析】

计算,根据回归直线方程必过样本中心点即可求得.【详解】根据表格数据:;,根据回归直线过点,则可得.故答案为:.【点睛】本题考查线性回归直线方程的性质:即回归直线经过样本中心点.15、1【解析】

由题意首先求得数列的公差,然后结合通项公式确定m的值即可.【详解】根据题意,设等差数列公差为d,则,又由,,则,,则,解可得;故答案为1.【点睛】本题考查等差数列的性质,关键是掌握等差数列的通项公式,属于中等题.16、18【解析】

先作出不等式组所表示的平面区域,再观察图像即可得解.【详解】解:作出不等式组所表示的平面区域,如图所示,由图可得:目标函数所在直线过点时,取最大值,即,故答案为:.【点睛】本题考查了简单的线性规划问题,重点考查了作图能力,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】

(1)首先根据周期为,得到,再根据图象的平移变换即可得到的解析式.(2)根据得到,根据余弦定理得到,根据基本不等式即可得到,再求周长的取值范围即可.【详解】(1)周期,,.将的图象向右平移个单位长度,再向上平移个单位长度得到.所以.(2),.因为,所以,..因为,所以.所以,即,.所以.【点睛】本题第一问考查三角函数的周期和平移变换,第二问考查了余弦定理,同时还考查了基本不等式,属于中档题.18、(2)an=n;bn=2n﹣2(2)Tn=(n﹣2)•2n+2【解析】

(2)运用数列的递推式,以及等比数列的通项公式可得bn,{an}是公差为的等差数列,运用等差数列的通项公式可得首项和公差,可得所求通项公式;

(2)求得,由数列的错位相减法求和,结合等比数列的求和公式,即可得到所求和.【详解】(2)2bn=b2(2+Sn),bn≠0,n=2时,2b2=b2(2+S2)=b2(2+b2),解得b2=2,n≥2时,2bn﹣2=2+Sn﹣2,且2bn=2+Sn,相减可得2bn﹣2bn﹣2=Sn﹣Sn﹣2=bn,即bn=2bn﹣2,可得bn=2n﹣2,设{an}是公差为d的等差数列,a2b2=4,a7+b3=2即为a2+d=2,a2+6d=7,解得a2=d=2,可得an=n;(2)cn=anbn=n•2n﹣2,前n项和,,两式相减可得﹣Tn=2+2+4+…+2n﹣2﹣n2nn2n,化简可得Tn=(n﹣2)2n+2.【点睛】本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的递推式和数列的错位相减法求和,化简运算能力,属于中档题.19、(1)(2)的最小值为,此时.【解析】

通过倍角公式,把化成标准形式,研究函数的相关性质(周期性,单调性,奇偶性,对称性,最值及最值相对于的变量),从而本题能顺利完成【详解】(1)因为.所以函数的最小正周期为.(2)当时,,此时,,,所以的最小值为,此时.【点睛】该类型考题关键是将化成性质,只有这样,我们才能很好的去研究他的性质.20、(1)(2)见解析【解析】

(1)因为数列的前项和满足:,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论