




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省滨州行知中学2024年高一数学第二学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若将函数的图象向右平移个单位,所得图象关于轴对称,则的最小值是()A. B. C. D.2.已知函数在区间上是增函数,且在区间上恰好取得一次最大值为2,则的取值范围是()A. B. C. D.3.设为等比数列,给出四个数列:①,②,③,④.其中一定为等比数列的是()A.①③ B.②④ C.②③ D.①②4.数列1,,,,…的一个通项公式为()A. B. C. D.5.已知向量,向量,且,那么等于()A. B. C. D.6.已知非零向量、,“函数为偶函数”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件7.若,且,恒成立,则实数的取值范围是()A. B.C. D.8.直线的斜率是()A. B. C. D.9.在中,角A,B,C所对的边分别为a,b,c,若,,,则满足条件的的个数为()A.0 B.1 C.2 D.无数多个10.阅读如图所示的算法框图,输出的结果S的值为A.8 B.6 C.5 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.设()则数列的各项和为________12.设公比为q(q>0)的等比数列{an}的前n项和为{Sn}.若,,则q=______________.13.若,则________.14.在等比数列中,,,则__________.15.已知为所在平面内一点,且,则_____16.在直角坐标系中,直线与直线都经过点,若,则直线的一般方程是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,为坐标原点,,,三点满足.(1)求值;(2)已知若的最小值为,求的最大值.18.在中,内角的对边分别为,且.(1)求角;(2)若,,求的值.19.如图,在三棱锥P-ABC中,PA⊥底面ABC,D是PC的中点.已知∠BAC=,AB=2,AC=2,PA=2.求:(1)三棱锥P-ABC的体积;(2)异面直线BC与AD所成的角的大小(结果用反三角函数值表示).20.已知关于的不等式.(1)当时,解上述不等式.(2)当时,解上述关于的不等式21.从某学校高三年级共800名男生中随机抽取50名学生作为样本测量身高.测量发现被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组;第二组;…;第八组.下图是按上述分组方法得到的频率分布直方图的一部分.已知第一组与第八组人数相同,第六组与第八组人数之和为第七组的两倍.(1)估计这所学校高三年级全体男生身高在180cm以上(含180cm)的人数;(2)求第六组和第七组的频率并补充完整频率分布直方图.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
把函数的解析式利用辅助角公式化成余弦型函数解析式形式,然后求出向右平移个单位后函数的解析式,根据题意,利用余弦型函数的性质求解即可.【详解】,该函数求出向右平移个单位后得到新函数的解析式为:,由题意可知:函数的图象关于轴对称,所以有当时,有最小值,最小值为.故选:B【点睛】本题考查了余弦型函数的图象平移,考查了余弦型函数的性质,考查了数学运算能力.2、D【解析】
化简函数为正弦型函数,根据题意,利用正弦函数的图象与性质求得的取值范围.【详解】解:函数则函数在上是含原点的递增区间;又因为函数在区间上是单调递增,则,得不等式组又因为,所以解得.又因为函数在区间上恰好取得一次最大值为2,可得,所以,综上所述,可得.故选:D.【点睛】本题主要考查了正弦函数的图像和性质应用问题,也考查了三角函数的灵活应用,属于中档题.3、D【解析】
设,再利用等比数列的定义和性质逐一分析判断每一个选项得解.【详解】设,①,,所以数列是等比数列;②,,所以数列是等比数列;③,不是一个常数,所以数列不是等比数列;④,不是一个常数,所以数列不是等比数列.故选D【点睛】本题主要考查等比数列的判定,意在考查学生对该知识的理解掌握水平和分析推理能力.4、A【解析】
把数列化为,根据各项特点写出它的一个通项公式.【详解】数列…可以化为,所以该数列的一个通项公式为.故选:A【点睛】本题考查了根据数列各项特点写出它的一个通项公式的应用问题,是基础题目.5、D【解析】
由两向量平行,其向量坐标交叉相乘相等,得到.【详解】因为,所以,解得:.【点睛】本题考查向量平行的坐标运算,考查基本运算,注意符号的正负.6、C【解析】
根据,求出向量的关系,再利用必要条件和充分条件的定义,即可判定,得到答案.【详解】由题意,函数,又为偶函数,所以,则,即,可得,所以,若,则,所以,则,所以函数是偶函数,所以“函数为偶函数”是“”的充要条件.故选C.【点睛】本题主要考查了向量的数量积的运算,函数奇偶性的定义及其判定,以及充分条件和必要条件的判定,着重考查了推理与运算能力,属于基础题.7、A【解析】
将代数式与相乘,展开式利用基本不等式求出的最小值,将问题转化为解不等式,解出即可.【详解】由基本不等式得,当且仅当,即当时,等号成立,所以,的最小值为.由题意可得,即,解得.因此,实数的取值范围是,故选A.【点睛】本题考查基本不等式的应用,考查不等式恒成立问题以及一元二次不等式的解法,对于不等式恒成立问题,常转化为最值来处理,考查计算能力,属于中等题.8、A【解析】
一般式直线方程的斜率为.【详解】直线的斜率为.故选A【点睛】此题考察一般直线方程的斜率,属于较易基础题目9、B【解析】
直接由正弦定理分析判断得解.【详解】由正弦定理得,所以C只有一解,所以三角形只有一解.故选:B【点睛】本题主要考查正弦定理的应用,意在考查学生对这些知识的理解掌握水平.10、B【解析】
判断框,即当执行到时终止循环,输出.【详解】初始值,代入循环体得:,,,输出,故选A.【点睛】本题由于循环体执行的次数较少,所以可以通过列举每次执行后的值,直到循环终止,从而得到的输出值.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据无穷等比数列的各项和的计算方法,即可求解,得到答案.【详解】由题意,数列的通项公式为,且,所以数列的各项和为.故答案为:.【点睛】本题主要考查了无穷等比数列的各项和的求解,其中解答中熟记无穷等比数列的各项和的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解析】将,两个式子全部转化成用,q表示的式子.即,两式作差得:,即:,解之得:(舍去)13、【解析】
先求,再代入求值得解.【详解】由题得所以.故答案为【点睛】本题主要考查共轭复数和复数的模的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.14、8【解析】
可先计算出公比,从而利用求得结果.【详解】因为,所以,所以,则.【点睛】本题主要考查等比数列基本量的相关计算,难度很小.15、【解析】
将向量进行等量代换,然后做出对应图形,利用平面向量基本定理进行表示即可.【详解】解:设,则根据题意可得,,如图所示,作,垂足分别为,则又,,故答案为.【点睛】本题考查了平面向量基本定理及其意义,两个向量的加减法及其几何意义,属于中档题.16、【解析】
点代入的方程求出k,再由求出直线的斜率,即可写出直线的点斜式方程.【详解】将点代入直线得,,解得,又,,于是的方程为,整理得.故答案为:【点睛】本题考查直线的方程,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)1【解析】
(1)由,得,化简得,即可得到答案;(2)化简函数,对实数分类讨论求得函数的最小值,得到关于的分段函数,进而求得函数的最大值.【详解】(1)由题意知三点满足,可得,所以,即即,则,所以.(2)由题意,函数因为,所以,当时,取得最小值,当时,当时,取得最小值,当时,当时,取得最小值,综上所述,,可得函数的最大值为1,即的最大值为1.【点睛】本题主要考查了向量的线性运算,向量的数量积的坐标性质,以及三角函数和二次函数的性质的综合应用,着重考查了分类讨论思想,以及推理与运算能力,属于中档试题.18、(1)(2),【解析】
(1)由正弦定理可得,求得,即可解得角;(2)由余弦定理,列出方程,即可求解.【详解】(1)由题意知,由正弦定理可得,因为,则,所以,即,又由,所以.(2)由(1)知和,,由余弦定理,即,即,解得,所以.【点睛】本题主要考查了正弦定理、余弦定理的应用,其中解答中熟记三角形的正弦、余弦定理,准确计算是解答的挂念,着重考查了推理与计算能力,属于基础题.19、(1);(2).【解析】
(1),三棱锥P-ABC的体积为.(2)取PB的中点E,连接DE、AE,则ED∥BC,所以∠ADE(或其补角)是异面直线BC与AD所成的角.在三角形ADE中,DE=2,AE=,AD=2,,所以∠ADE=.因此,异面直线BC与AD所成的角的大小是.20、(1).(2)当时,解集为,当时,解集为,当时,解集为或【解析】
(1)将代入,结合一元二次不等式解法即可求解.(2)根据不等式,对分类讨论,即可由零点大小确定不等式的解集.【详解】(1)当时,代入可得,解不等式可得,所以不等式的解集为.(2)关于的不等式.若,当时,代入不等式可得,解得;当时,化简不等式可得,由解不等式可得,当时,化简不等式可得,解不等式可得或,综上可知,当时,不等式解集为,当时,不等式解集为,当时,不等式解集为或【点睛】本题考查了一元二次不等式的解法,含参数分类讨论的应用,属于基础题.21、(1)144人(2)频率分别为0.08和0.1,见解析【解析】
(1)由直方图求出前五组频率为0.82,后三组频率为,由此能求出这所学校高三男生身高在以上(含的人数.(2)由频率分布直方图得第八组频率为0.04,人数为2人,设第六组人数为,则第七组人数为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 租地合同范本篇
- 美元借款合同
- 假期最后一课安全教育
- 个人资金赠与合同标准文本
- 幼儿园教学目标计划
- 什么的味道半命题作文800字6篇
- 2023浙江卷高考作文题目【6篇】
- ppp工程合同标准文本
- 与电力合同标准文本
- 个人正规还款合同标准文本
- 北京版五年级数学下学期期中复习真题
- 心理咨询师专业技能培训课件
- 超星尔雅学习通《工程伦理(浙江大学)》2025章节测试答案
- 2025年招聘社工面试题型及答案
- 2025年驾驶三力测试题及答案
- 中医情志调适在儿童的实践与应用
- 农产品电商农村电商供应链手册
- 儿童生长发育迟缓
- 肯氏分类课件
- 2025年河南工业职业技术学院单招职业技能测试题库及参考答案
- 2《再别康桥》 公开课一等奖创新教学设计
评论
0/150
提交评论