新疆生产建设兵团一师高级中学2025届高一下数学期末考试试题含解析_第1页
新疆生产建设兵团一师高级中学2025届高一下数学期末考试试题含解析_第2页
新疆生产建设兵团一师高级中学2025届高一下数学期末考试试题含解析_第3页
新疆生产建设兵团一师高级中学2025届高一下数学期末考试试题含解析_第4页
新疆生产建设兵团一师高级中学2025届高一下数学期末考试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆生产建设兵团一师高级中学2025届高一下数学期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在正项等比数列中,,则()A. B. C. D.2.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A. B. C. D.3.在△ABC中,,则△ABC为()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰三角形或直角三角形4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思是“有一个人走378里,第一天健步行走,从第二天起脚痛每天走的路程是前一天的一半,走了6天后到达目的地.”请问第三天走了()A.60里 B.48里 C.36里 D.24里5.已知,,,,则()A. B.C. D.6.下列关于极限的计算,错误的是()A.B.C.D.已知,则7.在各项均为正数的等比数列中,公比.若,,,数列的前n项和为,则当取最大值时,n的值为()A.8 B.9 C.8或9 D.178.如图,直角的斜边长为2,,且点分别在轴,轴正半轴上滑动,点在线段的右上方.设,(),记,,分别考察的所有运算结果,则()A.有最小值,有最大值 B.有最大值,有最小值C.有最大值,有最大值 D.有最小值,有最小值9.在正方体中,与棱异面的棱有()A.8条 B.6条 C.4条 D.2条10.已知,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则_______.12.在中,内角A,B,C所对的边分别为a,b,c,若,,b=1,则_____________13.已知正方形,向正方形内任投一点,则的面积大于正方形面积四分之一的概率是______.14.已知平面向量,,满足:,且,则的最小值为____.15.设的内角、、的对边分别为、、,且满足.则______.16.设向量,且,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知四棱台中,平面ABCD,四边形ABCD为平行四边形,,,,,E为DC中点.(1)求证:平面;(2)求证:;(3)求三棱锥的高.(注:棱台的两底面相似)18.已知数列的前项和为,点在直线上.(1)求数列的通项公式;(2)设,求数列的前项和.19.已知等比数列为递增数列,,,数列满足.(1)求数列的通项公式;(2)求数列的前项和.20.为了评估A,B两家快递公司的服务质量,从两家公司的客户中各随机抽取100名客户作为样本,进行服务质量满意度调查,将A,B两公司的调查得分分别绘制成频率分布表和频率分布直方图.规定分以下为对该公司服务质量不满意.分组频数频率0.4合计(Ⅰ)求样本中对B公司的服务质量不满意的客户人数;(Ⅱ)现从样本对A,B两个公司服务质量不满意的客户中,随机抽取2名进行走访,求这两名客户都来自于B公司的概率;(Ⅲ)根据样本数据,试对两个公司的服务质量进行评价,并阐述理由.21.已知,,其中,,且函数在处取得最大值.(1)求的最小值,并求出此时函数的解析式和最小正周期;(2)在(1)的条件下,先将的图像上的所有点向右平移个单位,再把所得图像上所有点的横坐标伸长为原来的2倍(纵坐标不变),然后将所得图像上所有的点向下平移个单位,得到函数的图像.若在区间上,方程有两个不相等的实数根,求实数a的取值范围;(3)在(1)的条件下,已知点P是函数图像上的任意一点,点Q为函数图像上的一点,点,且满足,求的解集.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

结合对数的运算,得到,即可求解.【详解】由题意,在正项等比数列中,,则.故选:D.【点睛】本题主要考查了等比数列的性质,以及对数的运算求值,其中解答中熟记等比数列的性质,合理应用对数的运算求解是解答的关键,着重考查了推理与计算能力,属于基础题.2、A【解析】

正四棱锥P-ABCD的外接球的球心在它的高上,记为O,PO=AO=R,,=4-R,在Rt△中,,由勾股定理得,∴球的表面积,故选A.考点:球的体积和表面积3、C【解析】

直接利用正弦定理余弦定理化简得到,即得解.【详解】由已知得,由正、余弦定理得,即,即,故是直角三角形.故答案为:C【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的掌握水平和分析推理水平.4、B【解析】

根据题意得出等比数列的项数、公比和前项和,由此列方程,解方程求得首项,进而求得的值.【详解】依题意步行路程是等比数列,且,,,故,解得,故里.故选B.【点睛】本小题主要考查中国古典数学文化,考查等比数列前项和的基本量计算,属于基础题.5、C【解析】

分别求出的值再带入即可.【详解】因为,所以因为,所以所以【点睛】本题考查两角差的余弦公式.属于基础题.6、B【解析】

先计算每个极限,再判断,如果是数列和的极限还需先求和,再求极限.【详解】,A正确;∵,∴,B错;,C正确;若,需按奇数项和偶数项分别求和后再极限,即,D正确.故选:B.【点睛】本题考查数列的极限,掌握极限运算法则是解题基础.在求数列前n项和的极限时,需先求出数列的前n项和,再对和求极限,不能对每一项求极限再相加.7、C【解析】∵为等比数列,公比为,且∴∴,则∴∴∴,∴数列是以4为首项,公差为的等差数列∴数列的前项和为令当时,∴当或9时,取最大值.故选C点睛:(1)在解决等差数列、等比数列的运算问题时,有两个处理思路:一是利用基本量将多元问题简化为一元问题;二是利用等差数列、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差数列、等比数列问题的快捷方便的工具;(2)求等差数列的前项和最值的两种方法:①函数法:利用等差数列前项和的函数表达式,通过配方或借助图象求二次函数最值的方法求解;②邻项变号法:当时,满足的项数使得取得最大值为;当时,满足的项数使得取得最小值为.8、B【解析】

设,用表示出,根据的取值范围,利用三角函数恒等变换化简,进而求得最值的情况.【详解】依题意,所以.设,则,所以,,所以,当时,取得最大值为.,所以,所以,当时,有最小值为.故选B.【点睛】本小题主要考查平面向量数量积的坐标运算,考查三角函数化简求值,考查化归与转化的数学思想方法,属于难题.9、C【解析】

在正方体12条棱中,找到与平行的、相交的棱,然后计算出与棱异面的棱的条数.【详解】正方体共有12条棱,其中与平行的有共3条,与与相交的有共4条,因此棱异面的棱有条,故本题选C.【点睛】本题考查了直线与直线的位置关系,考查了异面直线的判断.10、C【解析】

利用诱导公式和同角三角函数的商数关系,得,再利用化弦为切的方法,即可求得答案.【详解】由已知则故选C.【点睛】本题考查利用三角函数的诱导公式、同角三角函数的基本关系化简求值,属于三角函数求值问题中的“给值求值”问题,解题的关键是正确掌握诱导公式中符号与函数名称的变换规律和化弦为切方法.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

对两边平方整理即可得解.【详解】由可得:,整理得:所以【点睛】本题主要考查了同角三角函数基本关系及二倍角的正弦公式,考查观察能力及转化能力,属于较易题.12、2【解析】

根据条件,利用余弦定理可建立关于c的方程,即可解出c.【详解】由余弦定理得,即,解得或(舍去).故填2.【点睛】本题主要考查了利用余弦定理求三角形的边,属于中档题.13、【解析】

向正方形内任投一点,所有等可能基本事件构成正方形区域,当的面积大于正方形面积四分之一的所有基本事件构成区域矩形区域,由面积比可得概率值.【详解】如图边长为1的正方形中,分别是的中点,当点在线段上时,的面积为,所以的面积大于正方形面积四分之一,此时点应在矩形内,由几何概型得:,故填.【点睛】本题考查几何概型,利用面积比求概率值,考查对几何概型概率计算.14、-1【解析】

,,,由经过向量运算得,知点在以为圆心,1为半径的圆上,这样,只要最小,就可化简.【详解】如图,,则,设是中点,则,∵,∴,即,,记,则点在以为圆心,1为半径的圆上,记,,注意到,因此当与反向时,最小,∴.∴最小值为-1.故答案为-1.【点睛】本题考查平面向量的数量积,解题关键是由已知得出点轨迹(让表示的有向线段的起点都是原点)是圆,然后分析出只有最小时,才可能最小.从而得到解题方法.15、4【解析】

解法1有题设及余弦定理得.故.解法2如图4,过点作,垂足为.则,.由题设得.又,联立解得,.故.解法3由射影定理得.又,与上式联立解得,.故.16、【解析】因为,所以,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析;(3).【解析】

(1)连结,可证四边形为平行四边形,故可证平面;(2)连结BD,在中运用余弦定理可得:,利用勾股定理和线面垂直的性质,可得平面,因此可证;(3)根据题意,不难求,再利用即可求三棱锥的高.【详解】(1)证明:连结,因为为四棱台,所以,又因为四边形ABCD为平行四边形,,,所以,又,且,∴四边形为平行四边形,,又平面,平面,平面.(2)证明:连结BD,在中运用余弦定理可得:,∴由勾股定理逆定理得,即.又平面ABCD,,平面,所以.(3)在中,,,,所以,故.由(1)知,由(2)知,,所以.在中,由勾股定理得,在中,由,可得,设O为DB的中点,连结,则,且,又,所以,由勾股定理得,在中,因为,,,所以,即,故,设所求棱锥的高为h,则,所以.【点睛】本题考查线面平行、线线垂直的证明,棱锥的高,考查了三棱锥体积计算公式,利用体积转化法求高,属于中等题.18、(1)(2)【解析】

(1)先由题意得到,求出,再由,作出,得到数列为等比数列,进而可求出其通项公式;(2)先由(1)得到,再由错位相减法,即可求出结果.【详解】解:(1)由题可得.当时,,即.由题设,,两式相减得.所以是以2为首项,2为公比的等比数列,故.(2)由(1)可得,所以,.两边同乘以得.上式右边错位相减得.所以.化简得.【点睛】本题主要考查求数列的通项公式,以及数列的前项和,熟记等比数列的通项公式与求和公式,以及错位相减法求数列的和即可,属于常考题型.19、(1)(2)【解析】

(1)利用等比数列的下标性质,可以由,得到,通过解方程组,结合已知可以求出的值,这样可以求出公比,最后可以求出等比数列的通项公式,最后利用对数的运算性质可以求出数列的通项公式;(2)利用错位相消法可以求出数列的前项和.【详解】解(1)∵是等比数列∴又∵由是递增数列解得,且公比∴(2),两式相减得:∴【点睛】本题考查了等比数列下标的性质,考查了求等比数列通项公式,考查了对数运算的性质,考查了错位相消法,考查了数学运算能力.20、(Ⅰ)3人;(Ⅱ)0.3;(Ⅲ)见解析【解析】

(Ⅰ)对B公司的服务质量不满意的频率为,即概率为0.03,易求解.(Ⅱ)共有5名客服不满意,将每种情况都列出来即可算出全来自于B公司的概率.(Ⅲ)可通过频率对比,服务质量得分的众数,服务质量得70分(或80分)以上的频率几个方面进行对比.【详解】(Ⅰ)样本中对B公司的服务质量不满意的频率为,所以样本中对B公司的服务质量不满意的客户有人.(Ⅱ)设“这两名客户都来自于B公司”为事件M.对A公司的服务质量不满意的客户有2人,分别记为,;对B公司的服务质量不满意的客户有3人,分别记为,,.现从这5名客户中随机抽取2名客户,不同的抽取的方法有,,,,,,,,,共10个;其中都来自于B公司的抽取方法有,,共3个,所以.所以这两名客户都来自于B公司的概率为.(Ⅲ)答案一:由样本数据可以估计客户对A公司的服务质量不满意的频率比对B公司服务质量不满意的频率小,由此推断A公司的服务质量比B公司的服务质量好.答案二:由样本数据可以估计A公司的服务质量得分的众数与B公司服务质量得分的众数相同,由此推断A公司的服务质量与B公司的服务质量相同.答案三:由样本数据可以估计A公司的服务质量得70分(或80分)以上的频率比B公司得70分(或80分)以上的频率小,由此推断A公司的服务质量比B公司的服务质量差.答案四:由样本数据可以估计A公司的服务质量得分的平均分比B公司服务质量得分的平均分低,由此推断A公司的服务质量比B公司的服务质量差.【点睛】此题考查概率,关键理解清楚频率分布表和频率分布直方图表示的含有,简单数据可通过列表法求概率或者可以组合数求解,属于较易题目.21、(1)的最小值为1,,,(2)(3)原不等式的解集为【解析】

(1)先将化成正弦型,然后利用在处取得最大值求出,然后即可得到的解析式和周期(2)先根据图象的变换得到,然后画出在区间上的图象,条件转化为的图象与直线有两个交点即可(3)利用坐标的对应关系式,求出的函数的关系式,进一步利用三角不等式的应用求出结果.【详解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论