河南省平顶山市鲁山县第一高级中学2025届高一数学第二学期期末学业质量监测模拟试题含解析_第1页
河南省平顶山市鲁山县第一高级中学2025届高一数学第二学期期末学业质量监测模拟试题含解析_第2页
河南省平顶山市鲁山县第一高级中学2025届高一数学第二学期期末学业质量监测模拟试题含解析_第3页
河南省平顶山市鲁山县第一高级中学2025届高一数学第二学期期末学业质量监测模拟试题含解析_第4页
河南省平顶山市鲁山县第一高级中学2025届高一数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省平顶山市鲁山县第一高级中学2025届高一数学第二学期期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等差数列中,若,则()A.1 B.2 C.3 D.42.已知平面上四个互异的点、、、满足:,则的形状一定是()A.等边三角形 B.直角三角形 C.等腰三角形 D.钝角三角形3.的值为A. B. C. D.4.在中,,,,则的面积是()A. B. C.或 D.或5.在△中,已知,,,则△的面积等于()A.6 B.12 C. D.6.设是异面直线,则以下四个命题:①存在分别经过直线和的两个互相垂直的平面;②存在分别经过直线和的两个平行平面;③经过直线有且只有一个平面垂直于直线;④经过直线有且只有一个平面平行于直线,其中正确的个数有()A.1 B.2 C.3 D.47.甲、乙两位同学在高一年级的5次考试中,数学成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是,则下列叙述正确的是()A.,乙比甲成绩稳定B.,甲比乙成绩稳定C.,乙比甲成绩稳定D.,甲比乙成绩稳定8.已知,,O是坐标原点,则()A. B. C. D.9.已知m,n是两条不同的直线,是三个不同的平面,则下列命题正确的是()A.若,,则 B.若,则C.若,,,则 D.若,,则10.设点是函数图象上的任意一点,点满足,则的最小值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在水平放置的边长为1的正方形中随机撤1000粒豆子,有400粒落到心形阴影部分上,据此估计心形阴影部分的面积为_________.12.已知角α的终边与单位圆交于点.则___________.13.若的面积,则=14.已知数列中,,当时,,数列的前项和为_____.15.在明朝程大位《算术统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.这首古诗描述的这个宝塔古称浮屠,本题说“宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?”根据上述条件,从上往下数第二层有___________盏灯.16.已知数列{an}、{bn}都是公差为1的等差数列,且a1+b1=5三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)若三点共线,求的关系;(2)若,求点的坐标.18.某校准备从高一年级的两个男生和三个女生中选择2个人去参加一项比赛.(1)若从这5个学生中任选2个人,求这2个人都是女生的概率;(2)若从男生和女生中各选1个人,求这2个人包括,但不包括的概率.19.设向量,,其中.(1)若,求的值;(2)若,求的值.20.如图,是边长为2的正三角形.若,平面,平面平面,,且.(1)求证:平面;(2)求证:平面平面.21.“中国人均读书本(包括网络文学和教科书),比韩国的本、法国的本、日本的本、犹太人的本少得多,是世界上人均读书最少的国家”,这个论断被各种媒体反复引用.出现这样统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天名读书者进行调查,将他们的年龄分成段:,,,,,后得到如图所示的频率分布直方图.问:(1)估计在这名读书者中年龄分布在的人数;(2)求这名读书者年龄的平均数和中位数;(3)若从年龄在的读书者中任取名,求这两名读书者年龄在的人数恰为的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据已知先求出数列的首项,公差d已知,可得。【详解】由题得,,解得,则.故选:A【点睛】本题考查用数列的通项公式求某一项,是基础题。2、C【解析】

由向量的加法法则和减法法则化简已知表达式,再由向量的垂直和等腰三角形的三线合一性质得解.【详解】设边的中点,则所以在中,垂直于的中线,所以是等腰三角形.故选C.【点睛】本题考查向量的线性运算和数量积,属于基础题.3、B【解析】

试题分析:由诱导公式得,故选B.考点:诱导公式.4、C【解析】

先根据正弦定理求出角,从而求出角,再根据三角形的面积公式进行求解即可.【详解】解:由,,,根据正弦定理得:,为三角形的内角,或,或在中,由,,或则面积或.故选C.【点睛】本题主要考查了正弦定理,三角形的面积公式以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键,属于中档题.5、C【解析】

通过A角的面积公式,代入数据易得面积.【详解】故选C【点睛】此题考查三角形的面积公式,代入数据即可,属于简单题目.6、C【解析】对于①:可以在两个互相垂直的平面中,分别画一条直线,当这两条直线异面时,可判断①正确对于②:可在两个平行平面中,分别画一条直线,当这两条直线异面时,可判断②正确对于③:当这两条直线不是异面垂直时,不存在这样的平面满足题意,可判断③错误对于④:假设过直线a有两个平面α、β与直线b平行,则面α、β相交于直线a,过直线b做一平面γ与面α、β相交于两条直线m、n,则直线m、n相交于一点,且都与直线b平行,这与“过直线外一点有且只有一条直线与已知直线平行”矛盾,所以假设不成立,所以④正确故选:C.7、C【解析】甲的平均成绩,甲的成绩的方差;乙的平均成绩,乙的成绩的方差.∴,乙比甲成绩稳定.故选C.8、D【解析】

根据向量线性运算可得,由坐标可得结果.【详解】故选:【点睛】本题考查平面向量的线性运算,属于基础题.9、C【解析】

利用线面垂直、线面平行、面面垂直的性质定理分别对选项分析选择.【详解】对于A,若,,则或者;故A错误;对于B,若,则可能在内或者平行于;故B错误;对于C,若,,,过分作平面于,作平面,则根据线面平行的性质定理得,,∴,根据线面平行的判定定理,可得,又,,根据线面平行的性质定理可得,又,∴;故C正确;对于D.若,,则与可能垂直,如墙角;故D错误;故选:C.【点睛】本题考查了面面垂直、线面平行、线面垂直的性质定理及应用,涉及空间线线平行的传递性,考查了空间想象能力,熟练运用定理是关键.10、B【解析】

函数表示圆位于x轴下面的部分.利用点到直线的距离公式,求出最小值.【详解】函数化简得.圆心坐标,半径为2.所以【点睛】本题考查点到直线的距离公式,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、0.4【解析】

根据几何概型的计算,反求阴影部分的面积即可.【详解】设阴影部分的面积为,根据几何概型的概率计算公式:,解得.故答案为:.【点睛】本题考查几何概型的概率计算公式,属基础题.12、【解析】

直接利用三角函数的坐标定义求解.【详解】由题得.故答案为【点睛】本题主要考查三角函数的坐标定义,意在考查学生对该知识的理解掌握水平,属于基础题.13、【解析】试题分析:,.考点:三角形的面积公式及余弦定理的变形.点评:由三角形的面积公式,再根据,直接可求出tanC的值,从而得到C.14、.【解析】

首先利用数列的关系式的变换求出数列为等差数列,进一步求出数列的通项公式,最后求出数列的和.【详解】解:数列中,,当时,,整理得,即,∴数列是以为首项,6为公差的等差数列,故,所以,故答案为:.【点睛】本题主要考查定义法判断等差数列,考查等差数列的前项和,考查运算能力和推理能力,属于中档题.15、6.【解析】

根据题意可将问题转化为等比数列中,已知和,求解的问题;利用等比数列前项和公式可求得,利用求得结果.【详解】由题意可知,每层悬挂的红灯数成等比数列,设为设第层悬挂红灯数为,向下依次为且即从上往下数第二层有盏灯本题正确结果;【点睛】本题考查利用等比数列前项和求解基本量的问题,属于基础题.16、1【解析】

根据等差数列的通项公式把abn转化到a1+(bn-1)【详解】S=[=[=na1=4n+n(n-1)故答案为:12【点睛】本题主要考查等差数列通项公式和前n项和的应用,利用分组求和法是解决本题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)a+b=2;(2)(5,-3).【解析】

(1)求出和的坐标,然后根据两向量共线的等价条件可得所求关系式.(2)求出的坐标,根据得到关于的方程组,解方程组可得所求点的坐标.【详解】由题意知,,.(1)∵三点共线,∴∥,∴,∴.(2)∵,∴,∴,解得,∴点的坐标为.【点睛】本题考查向量共线的应用,解题的关键是把共线表示为向量的坐标的形式,进而转化为数的运算的问题,属于基础题.18、(1);(2).【解析】

(1)写出从5个学生中任选2个人的所有等可能基本事件,计算事件2个人都是女生所含的基本事件个数;(2)写出从男生和女生中各选1个人的所有等可能基本事件,计算事件2个人包括,但不包括所含的基本事件个数.【详解】(1)由题意知,从5个学生中任选2个人,其所有等可能基本事件有:,,,,,,,,,,共10个,选2个人都是女生的事件所包含的基本事件有,,,共3个,则所求事件的概率为.(2)从男生和女生中各选1个人,其所有可能的结果组成的基本事件有,,,,,,共6个,包括,但不包括的事件所包含的基本事件有,,共2个,则所求事件的概率为.【点睛】本题的两问均考查利用古典概型的概率计算公式,求事件发生的概率,求解过程中要求列出所有等可能结果,并指出事件所包含的基本事件个数,最后代入公式计算概率.19、(1);(2)【解析】

(1)由向量垂直的坐标运算求出,再构造齐次式求解即可;(2)先由向量的模的运算求得,再由求解即可.【详解】解:(1)若,则,得,所以;(2)因为,,则,因为,所以,即,化简得,即,所以,因为,所以,则,所以,,所以,故.【点睛】本题考查了三角函数构造齐次式求值,重点考查了两角差的正弦公式及二倍角公式,属中档题.20、(1)见解析;(2)见解析【解析】

(1)取的中点,连接,由平面平面,得平面,再证即可证明(2)证明平面,再根据面面垂直的判定定理从而进行证明.【详解】(1)取的中点,连接,因为,且,.所以,.又因为平面平面,所以平面,又平面,所以又因为平面,平面,所以平面.(2)连接,由(1)知,又,,所以四边形是平行四边形,所以.又是正三角形,为的中点,∴,因为平面平面,所以平面,所以平面.又平面,所以.因为,,所以平面.因为平面,所以平面平面.【点睛】本题考查了线面平行的证明,线面垂直,面面垂直的判定定理,考查空间想象和推理能力,熟记定理是关键,是一道中档题.21、(1);(2);(3).【解析】

(1)识别频率直方图,注意其纵轴的意义;(2)在频率直方图中平均数是每组数据的组中值乘以频率,中位数是排在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论