贵州省黔西县2024年数学高一下期末综合测试试题含解析_第1页
贵州省黔西县2024年数学高一下期末综合测试试题含解析_第2页
贵州省黔西县2024年数学高一下期末综合测试试题含解析_第3页
贵州省黔西县2024年数学高一下期末综合测试试题含解析_第4页
贵州省黔西县2024年数学高一下期末综合测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省黔西县2024年数学高一下期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,则()A.2 B.-2 C.1 D.-12.圆与圆的位置关系是()A.相切 B.内含 C.相离 D.相交3.已知一组数据1,3,2,5,4,那么这组数据的方差为()A.2 B.3 C.2 D.34.在等比数列中,,,则的值为()A.3或-3 B.3 C.-3 D.不存在5.已知向量,,若,则()A. B. C. D.6.角的终边经过点且,则的值为()A.-3 B.3 C.±3 D.57.圆与圆的位置关系是()A.内切 B.外切 C.相交 D.相离8.英国数学家布鲁克泰勒(TaylorBrook,1685~1731)建立了如下正、余弦公式(

)其中,,例如:.试用上述公式估计的近似值为(精确到0.01)A.0.99 B.0.98 C.0.97

D.0.969.如图,在正四棱锥中,,侧面积为,则它的体积为()A.4 B.8 C. D.10.在棱长为1的正方体中,点在线段上运动,则下列命题错误的是()A.异面直线和所成的角为定值 B.直线和平面平行C.三棱锥的体积为定值 D.直线和平面所成的角为定值二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域是_____.12.已知点,点,则________.13.向量满足,,则向量的夹角的余弦值为_____.14.已知sin=,则cos=________.15.设,且,则的取值范围是______.16.在等比数列中,,公比,若,则达到最大时n的值为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设.(1)用表示的最大值;(2)当时,求的值.18.已知圆,过点的直线与圆相交于不同的两点,.(1)若,求直线的方程.(2)判断是否为定值.若是,求出这个定值;若不是,请说明理由.19.等差数列中,,.(1)求数列的通项公式;(2)设,求数列的前项和.20.已知为数列的前项和,且.(1)求数列的通项公式;(2)若,求数列的前项和.21.求过点且与圆相切的直线方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据分段函数的表达式,直接代入即可得到结论.【详解】由分段函数的表达式可知,则,故选:.【点睛】本题主要考查函数值的计算,根据分段函数的表达式求解是解决本题的关键,属于容易题.2、D【解析】

写出两圆的圆心,根据两点间距离公式求得两圆心的距离,发现,所以两圆相交。比较三者之间大小判断位置关系。【详解】两圆的圆心分别为:,,半径分别为:,,两圆心距为:,所以,两圆相交,选D。【点睛】通过比较圆心距和半径和与半径差直接的关系判断,即比较三者之间大小。3、C【解析】

先由平均数的计算公式计算出平均数,再根据方差的公式计算即可。【详解】由题可得x=所以这组数据的方差S2故答案选C【点睛】本题考查方差的定义:一般地设n个数据:x1,x2,4、C【解析】

解析过程略5、B【解析】

∵,∴.∴,即,∴,,故选B.【考点定位】向量的坐标运算6、B【解析】

根据三角函数的定义建立方程关系即可.【详解】因为角的终边经过点且,所以则解得【点睛】本题主要考查三角函数的定义的应用,应注意求出的b为正值.7、B【解析】

由两圆的圆心距及半径的关系求解即可得解.【详解】解:由圆,圆,即,所以圆的圆心坐标为,圆的圆心坐标为,两圆半径,则圆心距,即两圆外切,故选:B.【点睛】本题考查了两圆的位置关系的判断,属基础题.8、B【解析】

利用题设中给出的公式进行化简,即可估算,得到答案.【详解】由题设中的余弦公式得,故答案为B【点睛】本题主要考查了新信息试题的应用,其中解答中理解题意,利用题设中的公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.9、A【解析】

连交于,连,根据正四棱锥的定义可得平面,取中点,连,则由侧面积和底面边长,求出侧面等腰三角形的高,在中,求出,即可求解.【详解】连交于,连,取中点,连因为正四棱锥,则平面,,侧面积,在中,,.故选:A.【点睛】本题考查正四棱锥结构特征、体积和表面积,属于基础题.10、D【解析】

结合条件和各知识点对四个选项逐个进行分析,即可得解.【详解】,在棱长为的正方体中,点在线段上运动易得平面,平面,,故这两个异面直线所成的角为定值,故正确,直线和平面平行,所以直线和平面平行,故正确,三棱锥的体积还等于三棱锥的体积,而平面为固定平面且大小一定,,而平面点到平面的距离即为点到该平面的距离,三棱锥的体积为定值,故正确,由线面夹角的定义,令与的交点为,可得即为直线和平面所成的角,当移动时这个角是变化的,故错误故选【点睛】本题考查了异面直线所成角的概念、线面平行及线面角等,三棱锥的体积的计算可以进行顶点轮换及线面平行时,直线上任意一点到平面的距离都相等这一结论,即等体积法的转换.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】

由题意得到关于x的不等式,解不等式可得函数的定义域.【详解】由已知得,即解得,故函数的定义域为.【点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.12、【解析】

直接利用两点间的距离公式求解即可.【详解】点A(2,1),B(5,﹣1),则|AB|.故答案为:.【点睛】本题考查两点间的距离公式的应用,基本知识的考查.13、【解析】

通过向量的垂直关系,结合向量的数量积求解向量的夹角的余弦值.【详解】向量,满足,,可得:,,向量的夹角为,所以.故答案为.【点睛】本题考查向量的数量积的应用,向量的夹角的余弦函数值的求法.考查计算能力.属于基础题.14、【解析】

由sin=,得cos2=1-2sin2=,即cos=,所以cos=cos=,故答案为.15、【解析】

通过可求得x的取值范围,接着利用反正弦函数的定义可得的取值范围.【详解】,,即.由反正弦函数的定义可得,即的取值范围为.故答案为:.【点睛】本题主要考查余弦函数的定义域和值域,反正弦函数的定义,属于基础题.16、7【解析】

利用,得的值【详解】因为,,所以为7.故答案为:7【点睛】本题考查等比数列的项的性质及单调性,找到与1的分界是关键,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】

(1)化f(x)为sinx的二次函数,根据二次函数的性质,对a讨论求出函数最大值;(2)由M(a)=2求出对应的a值即可.【详解】(1),∵,∴.①当,即时,;②当,即时,;③当,即时,.∴(2)当时,(舍)或-2(舍);当时,;当时,.综上或.【点睛】本题主要考查了三角函数恒等变换的应用和二次函数的性质问题,考查了分段函数求值问题,是中档题.18、(1)或.(2)是,定值.【解析】

(1)根据题意设出,再联立直线方程和圆的方程,得到,,然后由列式,再将的值代入求解,即可求出;(2)先根据特殊情况,当直线与轴垂直时,求出,再说明当直线与轴不垂直时,是否成立,即可判断.【详解】(1)由已知得不与轴垂直,不妨设,,.联立消去得,则有,又,,,解得或.所以,直线的方程为或.(2)当直线与轴垂直时(斜率不存在),,的坐标分别为,,此时.当不与轴垂直时,又由(1),,且,所以.综上,为定值.【点睛】本题主要考查直线与圆的位置关系的应用,韦达定理的应用,数量积的坐标表示,以及和圆有关的定值问题的解法的应用,意在考查学生的数学运算能力,属于中档题.19、(1);(2).【解析】

(1)设等差数列的公差为,根据题中条件列有关和的方程组,求出和,即可求出等差数列的通项公式;(2)将数列的通项公式裂项,然后利用裂项求和法求出数列的前项和。【详解】(1)设等差数列的公差为,由可得,解得,;(2),。【点睛】本题考查等差数列通项公式、裂项求和法,在求解等差数列的通项公式时,一般利用方程思想求出等差数列的首项和公差求出通项公式,在求和时要根据数列通项的基本结构选择合适的求和方法对数列求和,属于常考题型,属于中等题。20、(1)(2)当时,;当时,;当时,【解析】

(1)利用,时单独讨论.求解.

(2)对时单独讨论,当时,对从到的和应用错位相减法求和.【详解】当时,,得.当时,即.所以数列是以3为首项,3为公比的等比数列.所以(2)设,则..当时,当时,当时,设………………由﹣得所以所以综上所述:当时,当时,当时,【点睛】本题考查应用求通项公式和应用错位相减法求前项和,考查计算能力,属于难题.21、直线方程为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论