云南省大姚县一中2024年高一下数学期末联考试题含解析_第1页
云南省大姚县一中2024年高一下数学期末联考试题含解析_第2页
云南省大姚县一中2024年高一下数学期末联考试题含解析_第3页
云南省大姚县一中2024年高一下数学期末联考试题含解析_第4页
云南省大姚县一中2024年高一下数学期末联考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省大姚县一中2024年高一下数学期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,为线段上的一点,,且,则A., B.,C., D.,2.我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休,在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征,如函数的部分图象大致是()A. B.C. D.3.下图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件)若这两组数据的中位数相等,且平均值也相等,则和的值分别为A.5,5 B.3,5 C.3,7 D.5,74.若函数,则的值为()A. B. C. D.5.P是直线x+y+2=0上任意一点,点Q在圆x-22+yA.2 B.4-2 C.4+26.已知非零向量,满足,且,则与的夹角为

A. B. C. D.7.的内角的对边分别为,,,若的面积为,则A. B. C. D.8.已知,且,则()A. B. C. D.9.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数 B.平均数C.方差 D.极差10.若圆与圆外切,则()A.21 B.19 C.9 D.-11二、填空题:本大题共6小题,每小题5分,共30分。11.若,则函数的值域为________.12.已知向量,,若向量与垂直,则__________.13.已知单位向量与的夹角为,且,向量与的夹角为,则=.14.设数列的前n项和为,关于数列,有下列三个命题:(1)若既是等差数列又是等比数列,则;(2)若,则是等差数列:(3)若,则是等比数列这些命题中,真命题的序号是__________________________.15.已知函数,,则的最大值是__________.16.已知数列中,其前项和为,,则_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数().(1)若不等式的解集为,求的取值范围;(2)当时,解不等式;(3)若不等式的解集为,若,求的取值范围.18.已知,,,.(1)求的最小值(2)证明:.19.已知.(1)求的值;(2)求的值.20.已知数列满足:,,数列满足.(1)若数列的前项和为,求的值;(2)求的值.21.如图,是正方形,是正方形的中心,底面是的中点.(1)求证:平面;(2)若,求三棱锥的体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据相等向量的定义及向量的运算法则:三角形法则求出,利用平面向量基本定理求出x,y的值【详解】由题意,∵,∴,即,∴,即故选A.【点睛】本题以三角形为载体,考查向量的加法、减法的运算法则;利用运算法则将未知的向量用已知向量表示,是解题的关键.2、D【解析】

根据函数的性质以及特殊位置即可利用排除法选出正确答案.【详解】因为函数定义域为,关于原点对称,而,所以函数为奇函数,其图象关于原点对称,故排除A,C;又因为,故排除B.故选:D.【点睛】本题主要考查函数图象的识别,涉及余弦函数性质的应用,属于基础题.3、B【解析】

利用茎叶图、中位数、平均数的性质直接求解.【详解】由茎叶图得:∵甲、乙两组各5名工人某日的产量数据(单位:件)若这两组数据的中位数相等,∴65=60+y,解得y=5,∵平均值也相等,∴,解得x=1.故选B.【点睛】本题考查实数值的求法,考查茎叶图、中位数、平均数的性质等基础知识,考查运算求解能力,是基础题.4、D【解析】

根据分段函数的定义域与函数解析式的关系,代值进行计算即可.【详解】解:由已知,又,又,所以:.

故选:D.【点睛】本题考查了分段函数的函数值计算问题,抓住定义域的范围,属于基础题.5、D【解析】

首先求出圆心到直线的距离与半径比较大小,得到直线与圆是相离的,根据圆上的点到直线的距离的最小值等于圆心到直线的距离减半径,求得结果.【详解】因为圆心(2,0)到直线x+y+2=0的距离为d=2+0+2所以直线x+y+2=0与圆(x-2)2所以PQ的最小值等于圆心到直线的距离减去半径,即PQmin故选D.【点睛】该题考查的是有关直线与圆的问题,涉及到的知识点有直线与圆的位置关系,点到直线的距离公式,圆上的点到直线的距离的最小值问题,属于简单题目.6、B【解析】

根据题意,建立与的关系,即可得到夹角.【详解】因为,所以,则,则,所以,所以夹角为故选B.【点睛】本题主要考查向量的数量积运算,难度较小.7、C【解析】分析:利用面积公式和余弦定理进行计算可得。详解:由题可知所以由余弦定理所以故选C.点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理。8、D【解析】

根据不等式的性质,一一分析选择正误即可.【详解】根据不等式的性质,当时,对于A,若,则,故A错误;对于B,若,则,故B错误;对于C,若,则,故C错误;对于D,当时,总有成立,故D正确;故选:D.【点睛】本题考查不等式的基本性质,属于基础题.9、A【解析】

可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案.【详解】设9位评委评分按从小到大排列为.则①原始中位数为,去掉最低分,最高分,后剩余,中位数仍为,A正确.②原始平均数,后来平均数平均数受极端值影响较大,与不一定相同,B不正确③由②易知,C不正确.④原极差,后来极差可能相等可能变小,D不正确.【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.10、C【解析】试题分析:因为,所以且圆的圆心为,半径为,根据圆与圆外切的判定(圆心距离等于半径和)可得,故选C.考点:圆与圆之间的外切关系与判断二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

令,结合可得,本题转化为求二次函数在的值域,求解即可.【详解】,.令,,则,由二次函数的性质可知,当时,;当时,.故所求值域为.【点睛】本题考查了函数的值域,利用换元法是解决本题的一个方法.12、【解析】,所以,解得.13、【解析】试题分析:因为所以考点:向量数量积及夹角14、(1)、(2)、(3)【解析】

利用等差数列和等比数列的定义,以及等差数列和等比数列的前项和形式,逐一判断即可.【详解】既是等差数列又是等比数列的数列是非零常数列,故(1)正确.等差数列的前项和是二次函数形式,且不含常数,故(2)正确.等比数列的前项和是常数加上常数乘以的形式,故(3)正确.故答案为:(1),(2),(3)【点睛】本题主要考查等差数列和等比数列的定义,同时考查了等差数列和等比数列的前项和,属于简单题.15、3【解析】函数在上为减函数,故最大值为.16、1【解析】

本题主要考查了已知数列的通项式求前和,根据题目分奇数项和偶数项直接求即可。【详解】,则.故答案为:1.【点睛】本题主要考查了给出数列的通项式求前项和以及极限。求数列的前常用的方法有错位相减、分组求和、裂项相消等。本题主要利用了分组求和的方法。属于基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).;(3).【解析】试题分析:(1)对二项式系数进行讨论,可得求出解集即可;(2)分为,,分别解出3种情形对应的不等式即可;(3)将问题转化为对任意的,不等式恒成立,利用分离参数的思想得恒成立,求出其最大值即可.试题解析:(1)①当即时,,不合题意;②当即时,,即,∴,∴(2)即即①当即时,解集为②当即时,∵,∴解集为③当即时,∵,所以,所以∴解集为(3)不等式的解集为,,即对任意的,不等式恒成立,即恒成立,因为恒成立,所以恒成立,设则,,所以,因为,当且仅当时取等号,所以,当且仅当时取等号,所以当时,,所以点睛:本题主要考查了含有参数的一元二次不等式的解法,考查了分类讨论的思想以及转化与化归的能力,难度一般;对于含有参数的一元二次不等式常见的讨论形式有如下几种情形:1、对二次项系数进行讨论;2、对应方程的根进行讨论;3、对应根的大小进行讨论等;考查恒成立问题,正确分离参数是关键,也是常用的一种手段.通过分离参数可转化为或恒成立,即或即可,利用导数知识结合单调性求出或即得解.18、(1)1(2)见解析【解析】

(1)根据基本不等式即可求出,(2)利用x2+y2+z2(x2+y2+z2+x2+y2+y2+z2+x2+z2),再根据基本不等式即可证明【详解】(1)因为,,所以,即,当且仅当时等号成立,此时取得最小值1.(2).当且仅当时等号成立,【点睛】本题考查了基本不等式求最值和不等式的证明,属于中档题.19、(1);(2).【解析】试题分析:(1)要求的值,根据两角和的正弦公式,可知还要求得,由于已知,所以,利用同角关系可得;(2)要求,由两角差的余弦公式我们知要先求得,而这由二倍角公式结合(1)可很容易得到.本题应该是三角函数最基本的题型,只要应用公式,不需要作三角函数问题中常见的“角”的变换,“函数名称”的变换等技巧,可以算得上是容易题,当然要正确地解题,也必须牢记公式,及计算正确.试题解析:(1)由题意,所以.(2)由(1)得,,所以.【考点】三角函数的基本关系式,二倍角公式,两角和与差的正弦、余弦公式.20、(1);(2).【解析】

(1)构造数列等差数列求得的通项公式,再进行求和,再利用裂项相消求得;

(2)由题出现,故考虑用分为偶数和奇数两种情况进行计算.【详解】(1)由得,即,所以是以为首项,1为公差的等差数列,故,故.所以,故.

(2)当为偶数时,,当为奇数时,为偶数,

综上所述,当为偶数时,,当为奇数时,即.【点睛】本题主要考查了等差数列定义的应用,考查构造法求数列的通项公式与裂项求和及奇偶并项求和的方法,考查了分析问题的能力及逻辑推理能力,属于中档题.21、(1)证明见解析;(2).【解析】

(1)由平面得出,由底面为正方形得出,再利用直线与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论