版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市虹口区北虹高级中学2024届高一数学第二学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线:与直线:垂直,则实数().A. B. C.2 D.或22.设α,β为两个不同的平面,直线l⊂α,则“l⊥β”是“α⊥β”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是()A. B. C. D.4.某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4∶3∶2∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为()A.80 B.40 C.60 D.205.若,,与的夹角为,则的值是()A. B. C. D.6.函数f(x)=sin(ωx+π4)(ω>0)的图象在[0,πA.(1,5) B.(1,+∞) C.[7.阿波罗尼斯是古希腊著名的数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对几何问题有深刻而系统的研究,阿波罗尼斯圆是他的研究成果之一,指出的是:已知动点M与两定点A,B的距离之比为,那么点M的轨迹是一个圆,称之为阿波罗尼斯圆.请解答下面问题:已知,,若直线上存在点M满足,则实数c的取值范围是()A. B. C. D.8.等差数列中,则()A.8 B.6 C.4 D.39.把函数的图象沿轴向右平移个单位,再把所得图象上各点的纵坐标不变,横坐标变为原来的,可得函数的图象,则的解析式为()A. B.C. D.10.已知菱形的边长为,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设是等差数列的前项和,若,则________12.已知角满足且,则角是第________象限的角.13.已知向量(1,2),(x,4),且∥,则_____.14.已知变量和线性相关,其一组观测数据为,由最小二乘法求得回归直线方程为.若已知,则______.15.已知函数fx=Asin16.如图,两个正方形,边长为2,.将绕旋转一周,则在旋转过程中,与平面的距离最大值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆过点和,且圆心在直线上.(Ⅰ)求圆的标准方程;(Ⅱ)求直线:被圆截得的弦长.18.已知,,且(1)求函数的解析式;(2)当时,的最小值是,求此时函数的最大值,并求出函数取得最大值时自变量的值19.某大桥是交通要塞,每天担负着巨大的车流量.已知其车流量(单位:千辆)是时间(,单位:)的函数,记为,下表是某日桥上的车流量的数据:03691215182124(千辆)3.01.02.95.03.11.03.15.03.1经长期观察,函数的图象可以近似地看做函数(其中,,,)的图象.(1)根据以上数据,求函数的近似解析式;(2)为了缓解交通压力,有关交通部门规定:若车流量超过4千辆时,核定载质量10吨及以上的大货车将禁止通行,试估计一天内将有多少小时不允许这种货车通行?20.在平面直角坐标系中,已知.(1)求的值;(2)若,求的值.21.在平面直角坐标系中,已知点,,坐标分别为,,,为线段上一点,直线与轴负半轴交于点,直线与交于点.(1)当点坐标为时,求直线的方程;(2)求与面积之和的最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】试题分析:直线:与直线:垂直,则,.考点:直线与直线垂直的判定.2、A【解析】试题分析:当满足l⊂α,l⊥β时可得到α⊥β成立,反之,当l⊂α,α⊥β时,l与β可能相交,可能平行,因此前者是后者的充分不必要条件考点:充分条件与必要条件点评:命题:若p则q是真命题,则p是q的充分条件,q是p的必要条件3、C【解析】
如图,取中点,则平面,故,因此与平面所成角即为,设,则,,即,故,故选C.4、B【解析】试题分析:方法一:由条件可知三年级的同学的人数为,所以应抽人数为,方法二:由条件可知样本中一、二、三、四年级的人数比为4∶3∶2∶1,因此应抽取三年级的学生人数为,答案选B.考点:分层抽样5、C【解析】
由题意可得||•||•cos,,再利用二倍角公式求得结果.【详解】由题意可得||•||•cos,2sin15°4cos15°cos30°=2sin60°,故选:C.【点睛】本题主要考查两个向量的数量积的定义,二倍角公式的应用属于基础题.6、C【解析】
结合正弦函数的基本性质,抓住只有一条对称轴,建立不等式,计算范围,即可.【详解】当x=π4时,wx+π4=π4w+π4,当【点睛】考查了正弦函数的基本性质,关键抓住只有一条对称轴,建立不等式,计算范围,即可.7、B【解析】
根据题意设点M的坐标为,利用两点间的距离公式可得到关于的一元二次方程,只需即可求解.【详解】点M在直线上,不妨设点M的坐标为,由直线上存在点M满足,则,整理可得,,所以实数c的取值范围为.故选:B【点睛】本题考查了两点间的距离公式、一元二次不等式的解法,考查了学生分析问题解决问题的能力,属于中档题.8、D【解析】
设等差数列的公差为,根据题意,求解,进而可求得,即可得到答案.【详解】由题意,设等差数列的公差为,则,即,又由,故选D.【点睛】本题主要考查了等差数列的通项公式的应用,其中解答中设等差数列的公差为,利用等差数列的通项公式化简求解是解答的关键,着重考查了推理与运算能力,属于基础题.9、C【解析】
根据三角函数图像变换的原则,即可得出结果.【详解】先把函数的图象沿轴向右平移个单位,得到;再把图像上各点的纵坐标不变,横坐标变为原来的,得到.故选C【点睛】本题主要考查三角函数的图像变换问题,熟记图像变换的原则即可,属于常考题型.10、D【解析】
由菱形可直接得出所求两向量的模长及夹角,直接利用向量数量积公式即可.【详解】由菱形的性质可以得出:所以选择D【点睛】直接考查向量数量积公式,属于简单题二、填空题:本大题共6小题,每小题5分,共30分。11、5【解析】
由等差数列的前和公式,求得,再结合等差数列的性质,即可求解.【详解】由题意,根据等差数列的前和公式,可得,解得,又由等差数列的性质,可得.故答案为:.【点睛】本题主要考查了等差数列的性质,以及等差数列的前和公式的应用,其中解答中熟记等差数列的性质,以及合理应用等差数列的前和公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.12、三【解析】
根据三角函数在各个象限的符号,确定所在象限.【详解】由于,所以为第三、第四象限角;由于,所以为第二、第三象限角.故为第三象限角.故答案为:三【点睛】本小题主要考查三角函数在各个象限的符号,属于基础题.13、.【解析】
根据求得,从而可得,再求得的坐标,利用向量模的公式,即可求解.【详解】由题意,向量,则,解得,所以,则,所以.【点睛】本题主要考查了向量平行关系的应用,以及向量的减法和向量的模的计算,其中解答中熟记向量的平行关系,以及向量的坐标运算是解答的关键,着重考查了推理与运算能力,属于基础题.14、355【解析】
根据回归直线必过样本点的中心,根据横坐标结合回归方程求出纵坐标即可得解.【详解】由题:,回归直线方程为,所以,.故答案为:355【点睛】此题考查根据回归直线方程求样本点的中心的纵坐标,关键在于掌握回归直线必过样本点的中心,根据平均数求解.15、f【解析】分析:首先根据函数图象得函数的最大值为2,得到A=2,然后算出函数的周期T=π,利用周期的公式,得到ω=2,最后将点(5π代入,得:2=2sin(2×5π12+φ所以fx的解析式是f详解:根据函数图象得函数的最大值为2,得A=2,又∵函数的周期34T=5π将点(5π12,2)代入,得:2=2sin所以fx的解析式是f点睛:本题给出了函数y=Asin(ωx+φ)的部分图象,要确定其解析式,着重考查了三角函数基本概念和函数y=Asin(ωx+φ)的图象与性质的知识点,属于中档题.16、【解析】
绕旋转一周得到的几何体是圆锥,点的轨迹是圆.过作平面平面,交平面于.的轨迹在平面内.画出图像,根据图像判断出圆的下顶点距离平面的距离最大,解三角形求得这个距离的最大值.【详解】绕旋转一周得到的几何体是圆锥,故点的轨迹是圆.过作平面平面,交平面于.的轨迹在平面内.画出图像如下图所示,根据图像作法可知,当位于圆心的正下方点位置时,到平面的距离最大.在平面内,过作,交于.在中,,.所以①.其中,,所以①可化为.故答案为:【点睛】本小题主要考查旋转体的概念,考查空间点到面的距离的最大值的求法,考查空间想象能力和运算能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)设出圆心坐标和圆的标准方程,将点带入求出结果即可;(Ⅱ)利用圆心到直线的距离和圆的半径解直角三角形求得弦长.【详解】解:(Ⅰ)由题意可设圆心坐标为,则圆的标准方程为,∴解得故圆的标准方程为.(Ⅱ)圆心到直线的距离,∴直线被圆截得的弦长为.【点睛】本题考查了圆的方程,以及直线与圆相交求弦长的知识,属于基础题.18、(1)(2)【解析】试题分析:(1)由向量的数量积运算代入点的坐标得到三角函数式,运用三角函数基本公式化简为的形式;(2)由定义域可得到的范围,结合函数单调性求得函数最值及对应的自变量值试题解析:(1)即(2)由,,,,,此时,考点:1.向量的数量积运算;2.三角函数化简及三角函数性质19、(1)(2)8个小时【解析】
(1)根据函数的最大最小值可求出和,根据周期求出,根据一个最高点的横坐标可求得;
(2)解不等式可得.【详解】(1)根据表格中的数据可得:由,,解得:
由当时,有最大值,则即,得.
所以函数的近似解析式(2)若车流量超过4千辆时,即
所以,则所以,且.所以和满足条件.所以估计一天内将有8小时不允许这种货车通行.【点睛】本题考查了根据一些特殊的函数值观察周期特点,求解三角函数解析式以及简单应用,属中档题.20、(1);(2).【解析】
(1)由,得到,再结合向量的模的运算公式,即可求解.(2)因为,得到,求得,结合正切的倍角公式,即可求解.【详解】(1)由题意知,所以,因此;(2)因为,所以,即,因此.【点睛】本题主要考查了向量的坐标运算,向量的模的求解,以及向量的垂直的条件的应用和正切的倍角公式的化简求值等,着重考查了推理与计算能力,属于基础题.21、(1);(2).【解析】
(1)求出的直线方程后可得的坐标,再求出的直线方程和的直线方程后可得的坐标,从而得到直线的直线方程.(2)直线的方程为,设,求出的直线方程后可得的坐标,从而可用表示,换元后利用基本不等式可求的最小值.【详解】(1)当时,直线的方程为,所以,直线的方程为①,又直线的方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度消防安全评估与咨询服务合同
- 净水机租赁合同完整版
- 2024年度研发项目技术咨询和服务合同2篇
- 2024年度防腐涂料供应与施工合同
- 2024年度技术开发合同:合作双方的权利与义务3篇
- 班组安全建设课件
- 2024版特许经营合同样本(全新)2篇
- 2024版水泥购销合同(个人用户版)2篇
- 2024年度二手塔吊买卖合同的信息技术支持合同
- 人教版九年级化学第十单元实验活动6酸、碱的化学性质分层作业课件
- 1改革开放是决定当代中国前途命运的关键一招.1改革开放是决定当代中国前途命运的关键一招
- 尊重和传承中华民族历史文化
- 露天矿山开采与安全课件
- 宇宙的奥秘:星星的一生
- 康复科护士的病人安全与防护知识
- 智能制造的智能化和数字化
- 医学伦理学专项考核试题及答案
- 作业设计《质量守恒定律》
- 项目变更单(模板)
- 网络安全漏洞培训与教育
- 幼儿足球训练课件
评论
0/150
提交评论