版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省五校2024届数学高一下期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在等比数列中,若,则()A.3 B. C.9 D.132.已知等差数列中,,,则的值为()A.51 B.34 C.64 D.5123.在中,角的对边分别是,若,则()A.5 B. C.4 D.34.已知均为锐角,,则=A. B. C. D.5.已知,,三点,则的形状是()A.钝角三角形 B.直角三角形C.锐角三角形 D.等腰直角三角形6.设非零向量,满足,则()A. B. C.// D.7.已知平面平面,直线平面,直线平面,,在下列说法中,①若,则;②若,则;③若,则.正确结论的序号为()A.①②③ B.①② C.①③ D.②③8.数列的通项,其前项之和为,则在平面直角坐标系中,直线在轴上的截距为()A.-10 B.-9 C.10 D.99.如图,在中,面,,是的中点,则图中直角三角形的个数是()A.5 B.6 C.7 D.810.设,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的值域为________.12.若是方程的解,其中,则______.13.在等差数列中,,,则公差______.14.“”是“数列依次成等差数列”的______条件(填“充要”,“充分非必要”,“必要非充分”,“既不充分也不必要”).15.设,,,,则数列的通项公式=.16.已知一圆台的底面圆的半径分别为2和5,母线长为5,则圆台的高为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,的夹角为120°,且||=2,||=3,设32,2.(Ⅰ)若⊥,求实数k的值;(Ⅱ)当k=0时,求与的夹角θ的大小.18.下表是某地一家超市在2018年一月份某一周内周2到周6的时间与每天获得的利润(单位:万元)的有关数据.星期星期2星期3星期4星期5星期6利润23569(1)根据上表提供的数据,用最小二乘法求线性回归直线方程;(2)估计星期日获得的利润为多少万元.参考公式:19.已知数列,,,且.(1)设,证明数列是等比数列,并求数列的通项;(2)若,并且数列的前项和为,不等式对任意正整数恒成立,求正整数的最小值.(注:当时,则)20.已知定义在上的函数的图象如图所示(1)求函数的解析式;(2)写出函数的单调递增区间(3)设不相等的实数,,且,求的值.21.在平面直角坐标系下,已知圆O:,直线l:()与圆O相交于A,B两点,且.(1)求直线l的方程;(2)若点E,F分别是圆O与x轴的左、右两个交点,点D满足,点M是圆O上任意一点,点N在线段上,且存在常数使得,求点N到直线l距离的最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据等比数列性质即可得解.【详解】在等比数列中,,,所以,所以,.故选:A【点睛】此题考查等比数列的性质,根据性质求数列中的项的关系,关键在于熟练掌握相关性质,准确计算.2、A【解析】
根据等差数列性质;若,则即可。【详解】因为为等差数列,所以,,所以选择A【点睛】本题主要考查了等差数列比较重要的一个性质;在等差数列中若,则,属于基础题。3、D【解析】
已知两边及夹角,可利用余弦定理求出.【详解】由余弦定理可得:,解得.故选D.【点睛】本题主要考查利用正余弦定理解三角形,注意根据条件选用合适的定理解决.4、A【解析】因为,所以,又,所以,则;因为且,所以,又,所以;则====;故选A.点睛:三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式;(2)而看“函数名称”看函数名称之间的差异,从而确定使用公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式通分”等.5、D【解析】
计算三角形三边长度,通过边关系进行判断.【详解】由两点之间的距离公式可得:,,,因为,且故该三角形为等腰直角三角形.故选:D.【点睛】本题考查两点之间的距离公式,属基础题.6、A【解析】
根据与的几何意义可以判断.【详解】由的几何意义知,以向量,为邻边的平行四边形为矩形,所以.故选:A.【点睛】本题考查向量的加减法的几何意义,同时,本题也可以两边平方,根据数量积的运算推出结论.7、D【解析】
由面面垂直的性质和线线的位置关系可判断①;由面面垂直的性质定理可判断②;由线面垂直的性质定理可判断③.【详解】平面平面.直线平面,直线平面,,①若,可得,可能平行,故①错误;②若,由面面垂直的性质定理可得,故②正确;③若,可得,故③正确.故选:D.【点睛】本题考查空间线线和线面、面面的位置关系,主要是平行和垂直的判断和性质,考查推理能力,属于基础题.8、B【解析】试题分析:因为数列的通项公式为,所以其前项和为,令,所以直线方程为,令,解得,即直线在轴上的截距为,故选B.考点:数列求和及直线方程.9、C【解析】试题分析:因为面,所以,则三角形为直角三角形,因为,所以,所以三角形是直角三角形,易证,所以面,即,则三角形为直角三角形,即共有7个直角三角形;故选C.考点:空间中垂直关系的转化.10、C【解析】
首先化简,可得到大小关系,再根据,即可得到的大小关系.【详解】,,.所以.故选:C【点睛】本题主要考查指数,对数的比较大小,熟练掌握指数和对数函数的性质为解题的关键,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用反三角函数的单调性即可求解.【详解】函数是定义在上的增函数,函数在区间上单调递增,,,函数的值域是.故答案为:【点睛】本题考查了反三角函数的单调性以及反三角函数值,属于基础题.12、【解析】
把代入方程2cos(x+α)=1,化简根据α∈(0,2π),确定函数值的范围,求出α即可.【详解】∵是方程2cos(x+α)=1的解,∴2cos(+α)=1,即cos(+α)=.又α∈(0,2π),∴+α∈(,).∴+α=.∴α=.故答案为【点睛】本题考查三角函数值的符号,三角函数的定义域,考查逻辑思维能力,属于基础题.13、3【解析】
根据等差数列公差性质列式得结果.【详解】因为,,所以.【点睛】本题考查等差数列公差,考查基本分析求解能力,属基础题.14、必要非充分【解析】
通过等差数列的下标公式,得到必要条件,通过举特例证明非充分条件,从而得到答案.【详解】因为数列依次成等差数列,所以根据等差数列下标公式,可得,当,时,满足,但不能得到数列依次成等差数列所以综上,“”是“数列依次成等差数列”的必要非充分条件.故答案为:必要非充分.【点睛】本题考查必要非充分条件的证明,等差数列通项的性质,属于简单题.15、2n+1【解析】由条件得,且,所以数列是首项为4,公比为2的等比数列,则.16、4【解析】
根据圆台轴截面等腰梯形计算.【详解】,设圆高为,由圆台轴截面是等腰梯形得:,即,,故答案为:4.【点睛】本题考查求圆台的高,解题关键是掌握圆台的性质,圆台轴截面是等腰梯形.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用⊥,结合向量的数量积的运算公式,得到关于的方程,即可求解;(Ⅱ)当时,利用向量的数量积的运算公式,以及向量的夹角公式,即可求解.【详解】(Ⅰ)由题意,向量,的夹角为120°,且||=2,||=3,所以,,,又由.若⊥,可得,解得k.(Ⅱ)当k=0时,,则.因为,由向量的夹角公式,可得,又因为0≤θ≤π,∴,所以与的夹角θ的大小为.【点睛】本题主要考查了向量的数量积的运算,以及向量的夹角公式的应用,其中解答中熟记向量的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.18、见解析【解析】
(1)根据表中所给数据,求出横标的平均数,把求得的数据代入线性回归方程的系数公式,利用最小二乘法得到结果,写出线性回归方程。(2)根据二问求得的线性回归方程,代入所给的的值,预报出销售价格的估计值,这个数字不是一个准确数值。【详解】(1)由题意可得,,因此,,所以,-所以;(2)由(1)可得,当时,(万元),即星期日估计活动的利润为10.1万元。【点睛】关键点通过参考公式求出,的值,通过线性回归方程求解的是一个估计值。19、(1)证明见解析,(2)10【解析】
(1)根据等比数列的定义,结合题中条件,计算,,即可证明数列是等比数列,求出;再根据累加法,即可求出数列的通项;(2)根据题意,得到,分别求出,当,用放缩法得,根据裂项相消法求,进而可求出结果.【详解】(1)证明:,而∴是以4为首项2为公比的等比数列,,∴即,,所以,,......,,以上各式相加得:;∴;(2)由(1)得:,,,,,由已知条件知当时,,即∴,而综上所述得最小值为10.【点睛】本题主要考查证明数列为等比数列,求数列的通项公式,以及数列的应用,熟记等比数列的概念,累加法求数列的通项公式,以及裂项相消法求数列的和等即可,属于常考题型.20、(1);(2);(3);【解析】
(1)根据函数的最值可得,周期可得,代入最高点的坐标可得,从而可得解析式;(2)利用正弦函数的递增区间可解得;(3)利用在内的解就是和,即可得到结果.【详解】(1)由函数的图象可得,又因为函数的周期,所以,因为函数的图象经过点,即,所以,即,所以.(2)由,可得,可得函数的单调递增区间为:,(3)因为,所以,又因为可得,所以或,解得或,、因为且,,所以.【点睛】本题考查了由图象求解析式,考查了正弦函数的递增区间,考查了由函数值求角,属于中档题.21、(1);(2).【解析】
(1)等价于圆心O到直线l的距离,再由点到直线的距离公式求解即可;(2)先设点,再结合题意可得点N在以为圆心,半径为的圆R上,再结合点到直线的距离公式求解即可.【详解】解:(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年行政合同范本:行政主体合同履约保障与优益权执行3篇
- 2024年行业竞争回避协议
- 2024年绿色环保项目宣传推广合同
- 2024年综合外墙保温施工协议3篇
- 2024年绿色生态石材项目承包施工及后期维护服务合同3篇
- 2024年租车简易版:标准汽车租赁协议
- 2024版专业技术人员国内外进修协议样式一
- 《静脉炎的护理》课件
- 2025年度餐饮企业员工劳动合同续签与调整协议3篇
- 2024年高端服装定制加工合同
- “双减”政策下的学生心理健康工作总结
- 八年级上册语文期中试卷含答案
- 考研计算机学科专业基础(408)研究生考试试卷与参考答案(2025年)
- 糖尿病病人的饮食教育
- 重大火灾隐患判定方法知识培训
- 海南省申论真题2020年(县级及以上)
- 装配式部分包覆钢-混凝土组合结构技术规程
- 四川新农村建设农房设计方案图集川东南部分
- 2024中国工业品电商采购白皮书
- 公安机关保密协议
- 蛇年金蛇贺岁
评论
0/150
提交评论