河南省重点中学2023-2024学年数学高一下期末学业质量监测模拟试题含解析_第1页
河南省重点中学2023-2024学年数学高一下期末学业质量监测模拟试题含解析_第2页
河南省重点中学2023-2024学年数学高一下期末学业质量监测模拟试题含解析_第3页
河南省重点中学2023-2024学年数学高一下期末学业质量监测模拟试题含解析_第4页
河南省重点中学2023-2024学年数学高一下期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省重点中学2023-2024学年数学高一下期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知正方体的个顶点中,有个为一侧面是等边三角形的正三棱锥的顶点,则这个正三棱锥与正方体的全面积之比为()A. B. C. D.2.已知实数满足,则的最大值为()A. B. C. D.3.数列中,,,则().A. B. C. D.4.执行如图所示的程序语句,输出的结果为()A. B.C. D.5.如图,两个正方形和所在平面互相垂直,设、分别是和的中点,那么:①;②平面;③;④、异面.其中不正确的序号是()A.① B.② C.③ D.④6.为了解名学生的学习情况,采用系统抽样的方法,从中抽取容量为的样本,则分段的间隔为()A. B. C. D.7.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样 B.按性别分层抽样C.按学段分层抽样 D.系统抽样8.已知,则向量与向量的夹角是()A. B. C. D.9.为了得到函数的图象,只需把函数的图象上所有的点A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度10.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13,21,….该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数组成的数列称为“斐波那契数列”,则().A.1 B.2019 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若三边长分别为3,5,的三角形是锐角三角形,则的取值范围为______.12.若、为单位向量,且,则向量、的夹角为_______.(用反三角函数值表示)13.等差数列,,存在正整数,使得,,若集合有4个不同元素,则的可能取值有______个.14.某中学高一年级有学生1200人,高二年级有学生900人,高三年级有学生1500人,现按年级用分层抽样的方法从这三个年级的学生中抽取一个容量为720的样本进行某项研究,则应从高三年级学生中抽取_____人.15.若正四棱锥的侧棱长为,侧面与底面所成的角是45°,则该正四棱锥的体积是________.16.在锐角中,内角A,B,C所对的边分别为a,b,c,若的面积为,且,则的周长的取值范围是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)求;(2)求向量与的夹角的余弦值.18.如图,三棱柱的侧面是边长为的菱形,,且.(1)求证:;(2)若,当二面角为直二面角时,求三棱锥的体积.19.已知角的顶点与原点重合,始边与轴的非负半轴重合,终边过点.(1)求的值;(2)已知为锐角,,求的值.20.在△ABC中,已知BC=7,AB=3,∠A=60°.(1)求cos∠C的值;(2)求△ABC的面积.21.已知等差数列满足,且.(1)求数列的通项;(2)求数列的前项和的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】所求的全面积之比为:,故选A.2、A【解析】

由原式,明显考查斜率的几何意义,故上下同除以得,再画图分析求得的取值范围,再用基本不等式求解即可.【详解】所求式,上下同除以得,又的几何意义为圆上任意一点到定点的斜率,由图可得,当过的直线与圆相切时取得临界条件.当过坐标为时相切为一个临界条件,另一临界条件设,化成一般式得,因为圆与直线相切,故圆心到直线的距离,所以,,解得,故.设,则,又,故,当时取等号.故,故选A.【点睛】本题主要考查斜率的几何意义,基本不等式的用法等.注意求斜率时需要设点斜式,利用圆心到直线的距离等于半径列式求得斜率,在用基本不等式时要注意取等号的条件.3、B【解析】

通过取倒数的方式可知数列为等差数列,利用等差数列通项公式求得,进而得到结果.【详解】由得:,即数列是以为首项,为公差的等差数列本题正确选项:【点睛】本题考查利用递推关系式求解数列中的项的问题,关键是能够根据递推关系式的形式,确定采用倒数法得到等差数列.4、B【解析】

通过解读算法框图功能发现是为了求数列的和,采用裂项相消法即可得到答案.【详解】由已知中的程序语句可知:该程序的功能是求的值,输出的结果为,故选B.【点睛】本题主要考查算法框图基本功能,裂项相消法求和,意在考查学生的分析能力和计算能力.5、D【解析】

取的中点,连接,,连接,,由线面垂直的判定和性质可判断①;由三角形的中位线定理,以及线面平行的判定定理可判断②③④.【详解】解:取的中点,连接,,连接,,正方形和所在平面互相垂直,、分别是和的中点,可得,,平面,可得,故①正确;由为的中位线,可得,且平面,可得平面,故②③正确,④错误.故选:D.【点睛】本题主要考查空间线线和线面的位置关系,考查转化思想和数形结合思想,属于基础题.6、C【解析】试题分析:由题意知,分段间隔为,故选C.考点:本题考查系统抽样的定义,属于中等题.7、C【解析】试题分析:符合分层抽样法的定义,故选C.考点:分层抽样.8、C【解析】试题分析:根据已知可得:,所以,所以夹角为,故选择C考点:向量的运算9、D【解析】试题分析:由题意,为得到函数的图象,只需把函数的图象上所有的点向右平行移动个单位长度,故选D.【考点】三角函数图象的平移【名师点睛】本题考查三角函数图象的平移,在函数的图象平移变换中要注意“”的影响,变换有两种顺序:一种的图象向左平移个单位得的图象,再把横坐标变为原来的倍,纵坐标不变,得的图象,另一种是把的图象横坐标变为原来的倍,纵坐标不变,得的图象,再向左平移个单位得的图象.10、A【解析】

计算部分数值,归纳得到,计算得到答案.【详解】;;;…归纳总结:故故选:【点睛】本题考查了数列的归纳推理,意在考查学生的推理能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由三边长分别为3,5,的三角形是锐角三角形,若5是最大边,则,解得范围,若是最大边,则,解得范围,即可得出.【详解】解:由三边长分别为3,5,的三角形是锐角三角形,若5是最大边,则,解得.若是最大边,则,解得.综上可得:的取值范围为.故答案为:.【点睛】本题考查了不等式的性质与解法、余弦定理、分类讨论方法,考查了推理能力与计算能力,属于中档题.12、.【解析】

设向量、的夹角为,利用平面向量数量积的运算律与定义计算出的值,利用反三角函数可求出的值.【详解】设向量、的夹角为,由平面向量数量积的运算律与定义得,,,因此,向量、的夹角为,故答案为.【点睛】本题考查利用平面向量的数量积计算平面向量所成的夹角,解题的关键就是利用平面向量数量积的定义和运算律,考查运算求解能力,属于中等题.13、4【解析】

由题意得为周期数列,集合有4个不同元素,得,在分别对取值讨论即可.【详解】设等差数列的首项为,公差为,则,,由题意,存在正整数,使得,又集合有4个不同元素,得,当时,,即,,或(舍),,取,则,在单位圆上的4个等分点可取到4个不同的正弦值,即集合可取4个不同元素;当,,即,,在单位圆上的5个等分点不可能取到4个不同的正弦值,故舍去;同理可得:当,,,集合可取4个不同元素;当时,,单位圆上至少9个等分点取4个不同的正弦值,必有至少3个相等的正弦值,不符合集合的元素互异性,故不可取应舍去.故答案:4.【点睛】本题考查等差数列的通项公式、集合元素的性质以及三角函数的周期性,理解分析问题能力,属于难题.14、1.【解析】

先求得高三学生占的比例,再利用分层抽样的定义和方法,即可求解.【详解】由题意,高三学生占的比例为,所以应从高三年级学生中抽取的人数为.【点睛】本题主要考查了分层抽样的定义和方法,其中解答中熟记分层抽样的定义和抽取的方法是解答的关键,着重考查了运算与求解能力,属于基础题.15、【解析】

过棱锥顶点作,平面,则为的中点,为正方形的中心,连结,设正四棱锥的底面长为,根据已知求出a=2,SO=1,再求该正四棱锥的体积.【详解】过棱锥顶点作,平面,则为的中点,为正方形的中心,连结,则为侧面与底面所成角的平面角,即,设正四棱锥的底面长为,则,所以,在中,∵∴,解得,∴∴棱锥的体积.故答案为【点睛】本题主要考查空间线面角的计算,考查棱锥体积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.16、【解析】

通过观察的面积的式子很容易和余弦定理联系起来,所以,求出,所以.再由正弦定理即可将的范围通过辅助角公式化简利用三角函数求出范围即可.【详解】因为的面积为,所以,所以.由余弦定理可得,则,即,所以.由正弦定理可得,所以.因为为锐角三角形,所以,所以,则,即.故的周长的取值范围是.【点睛】此题考察解三角形,熟悉正余弦定理,然后一般求范围的题目转化为求解三角函数值域即可,易错点注意转化后角的范围区间,属于中档题目.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)根据题意求出,即可求解;(2)向量与的夹角的余弦值为:代入求值即可得解.【详解】(1)由题:,解得:(2)向量与的夹角的余弦值为:【点睛】此题考查平面向量数量积的运算,根据运算法则求解数量积和模长,求解向量夹角的余弦值.18、(1)见解析(2)【解析】

(1)利用直线与平面垂直的判定,结合三角形全等判定,得到,再次结合三角形全等,即可.(2)法一:建立坐标系,分别计算的法向量,结合两向量夹角为直角,计算出的值,然后结合,即可.法二:设出OA=x,用x分别表示AB,BD,AD,结合,建立方程,计算x,结合,即可.【详解】(1)连结,交于点,连结,因为侧面是菱形,所以,又因为,,所以平面,而平面,所以,因为,所以,而,所以,.(2)因为,,所以,(法一)以为坐标原点,所以直线为轴,所以直线为轴,所以直线为轴建立如图所示空间直角坐标系,设,则,,,,,所以,,,设平面的法向量,所以令,则,,取,设平面的法向量,所以令,则,,取,依题意得,解得.所以.(法二)过作,连结,由(1)知,所以且,所以是二面角的平面角,依题意得,,所以,设,则,,又由,,所以由,解得,所以.【点睛】本道题考查了直线与平面垂直判定,考查了利用空间向量解决二面角问题,难度较难.19、(1);(2).【解析】

(1)利用三角函数的定义可求出,再根据二倍角的余弦公式即可求解.(2)由(1)可得,再利用同角三角函数的基本关系可得,由,利用两角差的正切公式即可求解.【详解】解:(1)依题意得,,,所以.(2)由(1)得,,故.因为,,,所以,又因为,所以,.所以,所以.【点睛】本小题主要考查同角三角函数关系、三角恒等变换等基础知识,考查运算求解能力、推理论证能力,考查化归与转化思想等.20、(1)(2)【解析】

(1)由已知及正弦定理可得sinC的值,利用大边对大角可求C为锐角,根据同角三角函数基本关系式可求cosC的值.(2)利用三角形内角和定理,两角和的正弦函数公式可求sinB的值,根据三角形的面积公式即可计算得解.【详解】(1)由题意,BC=7,AB=3,∠A=60°.∴由正弦定理可得:sinC=∵BC>AB,∴C为锐角,∴cosC===,(2)因为A+B+C=π,A=60°,∴sinB=sin(A+C)=sinAcos

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论