版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆九龙坡区2024届数学高一下期末统考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列事件是随机事件的是(1)连续两次掷一枚硬币,两次都出现正面向上.(2)异性电荷相互吸引(3)在标准大气压下,水在℃时结冰(4)任意掷一枚骰子朝上的点数是偶数A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)2.函数的最小正周期为,则图象的一条对称轴方程是()A. B. C. D.3.将函数的图像向右平衡个单位长度,再把图象上所有点的横坐标伸长到原来的倍(纵坐标不变)得到函数的图象,则下列说法正确的是()A.函数的最大值为 B.函数的最小正周期为C.函数的图象关于直线对称 D.函数在区间上单调递增4.在等比数列中,,,则数列的前六项和为()A.63 B.-63 C.-31 D.315.等比数列,…的第四项等于(
)A.-24 B.0 C.12 D.246.已知中,,,,那么角等于()A. B. C.或 D.7.已知,是两个单位向量,且夹角为,则与数量积的最小值为()A. B. C. D.8.已知β为锐角,角α的终边过点(3,4),sin(α+β)=,则cosβ=()A. B. C. D.或9.已知向量,,若,共线,则实数()A. B. C. D.610.直线的倾斜角为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的值是______.12.已知数列,其中,若数列中,恒成立,则实数的取值范围是_______.13.已知,且是第一象限角,则的值为__________.14.已知一个扇形的周长为4,则扇形面积的最大值为______.15.已知都是锐角,,则=_____16.三棱锥中,分别为的中点,记三棱锥的体积为,的体积为,则____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,是菱形,对角线与的交点为,四边形为梯形,,.(1)若,求证:平面;(2)求证:平面平面;(3)若,求直线与平面所成角的余弦值.18.某同学假期社会实践活动选定的课题是“节约用水研究”.为此他购买了电子节水阀,并记录了家庭未使用电子节水阀20天的日用水量数据(单位:)和使用了电子节水阀20天的日用水量数据,并利用所学的《统计学》知识得到了未使用电子节水阀20天的日平均用水量为0.48,使用了电子节水阀20天的日用水量数据的频率分布直方图如下图:(1)试估计该家庭使用电子节水阀后,日用水量小于0.35的概率;(2)估计该家庭使用电子节水阀后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)19.在平面上有一点列、、、、,对每个正整数,点位于函数的图像上,且点、点与点构成一个以为顶角顶点的等腰三角形;(1)求点的纵坐标的表达式;(2)若对每个自然数,以、、为边长能构成一个三角形,求的取值范围;(3)设,若取(2)中确定的范围内的最小整数,问数列的最大项的项数是多少?试说明理由;20.已知向量,,.(1)求函数的最小正周期及单调递减区间;(2)记的内角的对边分别为.若,,求的值.21.已知数列的前项和();(1)判断数列是否为等差数列;(2)设,求;(3)设(),,是否存在最小的自然数,使得不等式对一切正整数总成立?如果存在,求出;如果不存在,说明理由;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】试题分析:根据随机事件的定义:在相同条件下,可能发生也可能不发生的现象(2)是必然发生的,(3)是不可能发生的,所以不是随机事件,故选择D考点:随机事件的定义2、D【解析】
先根据函数的周期求出的值,求出函数的对称轴方程,然后利用赋值法可得出函数图象的一条对称轴方程.【详解】由于函数的最小正周期为,则,,令,解得.当时,函数图象的一条对称轴方程为.故选:D.【点睛】本题考查利用正弦型函数的周期求参数,同时也考查了正弦型函数图象对称轴方程的计算,解题时要结合正弦函数的基本性质来进行求解,考查运算求解能力,属于中等题.3、C【解析】
根据函数y=Asin(ωx+φ)的图象变换规律,得到g(x)的解析式,再利用正弦函数的图象性质,得出结论.【详解】将函数的图象向右平移个单位长度,可得y=2sin(2x)的图象,再把图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数g(x)=2sin(x)的图象,故g(x)的最大值为2,故A错误;显然,g(x)的最小正周期为2π,故B错误;当时,g(x)=,是最小值,故函数g(x)的图象关于直线对称,故C正确;在区间上,x∈[,],函数g(x)=2sin(x)单调递减,故D错误,故选:C.【点睛】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象性质应用,属于基础题.4、B【解析】
利用等比数列通项公式求出公式,由此能求出数列的前六项和.【详解】在等比数列中,,,解得数列的前六项和为:.故选:【点睛】本题考查等比数列通项公式求解基本量,属于基础题.5、A【解析】由x,3x+3,6x+6成等比数列得选A.考点:该题主要考查等比数列的概念和通项公式,考查计算能力.6、B【解析】
先由正弦定理求出,进而得出角,再根据大角对大边,大边对大角确定角.【详解】由正弦定理得:,,∴或,∵,∴,∴,故选B.【点睛】本题主要考查正弦定理的应用以及大边对大角,大角对大边的三角形边角关系的应用.7、B【解析】
根据条件可得,,,然后进行数量积的运算即可.【详解】根据条件,,,,当时,取最小值.故选:B【点睛】本题考查了向量数量积的运算,同时考查了二次函数的最值,属于基础题.8、B【解析】
由题意利用任意角的三角函数的定义求得sinα和cosα,再利用同角三角函数的基本关系求得cos(α+β)的值,再利用两角差的余弦公式求得cosβ=cos[(α+β)﹣α]的值.【详解】β为锐角,角α的终边过点(3,4),∴sinα,cosα,sin(α+β)sinα,∴α+β为钝角,∴cos(α+β),则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα••,故选B.【点睛】本题主要考查任意角的三角函数的定义,同角三角函数的基本关系、两角和差的余弦公式的应用,属于基础题.9、C【解析】
利用向量平行的性质直接求解.【详解】向量,,共线,,解得实数.故选:.【点睛】本题主要考查向量平行的性质等基础知识,考查运算求解能力,是基础题.10、C【解析】
先根据直线方程得斜率,再求倾斜角.【详解】因为直线,所以直线斜率为,所以倾斜角为,选C.【点睛】本题考查直线斜率以及倾斜角,考查基本分析求解能力,属基本题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据两角差的正切公式即可求解【详解】故答案为:【点睛】本题考查两角差的正切公式的用法,属于基础题12、【解析】
由函数(数列)单调性确定的项,哪些项取,哪些项取,再由是最小项,得不等关系.【详解】由题意数列是递增数列,数列是递减数列,存在,使得时,,当时,,∵数列中,是唯一的最小项,∴或,或,或,综上.∴的取值范围是.故答案为:.【点睛】本题考查数列的单调性与最值.解题时楞借助函数的单调性求解.但数列是特殊的函数,它的自变量只能取正整数,因此讨论时与连续函数有一些区别.13、;【解析】
利用两角和的公式把题设展开后求得的值,进而利用的范围判断的范围,利用同角三角函数的基本关系求得的值,最后利用诱导公式和对原式进行化简,把的值和题设条件代入求解即可.【详解】,,即,,两边同时平方得到:,解得,是第一象限角,,得,,即为第一或第四象限,,.故答案为:.【点睛】本题考查了两角差的余弦公式、诱导公式以及同角三角函数的基本关系,需熟记三角函数中的公式,属于中档题.14、1【解析】
表示出扇形的面积,利用二次函数的单调性即可得出.【详解】设扇形的半径为,圆心角为,则弧长,,即,该扇形的面积,当且仅当时取等号.该扇形的面积的最大值为.故答案:.【点睛】本题考查了弧长公式与扇形的面积计算公式、二次函数的单调性,考查了计算能力,属于基础题.15、【解析】
由已知求出,再由两角差的正弦公式计算.【详解】∵都是锐角,∴,又,∴,,∴.故答案为.【点睛】本题考查两角和与差的正弦公式.考查同角间的三角函数关系.解题关键是角的变换,即.这在三角函数恒等变换中很重要,即解题时要观察“已知角”和“未知角”的关系,根据这个关系选用相应的公式计算.16、【解析】
由已知设点到平面距离为,则点到平面距离为,所以,考点:几何体的体积.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析;(3)【解析】
(1)取的中点,连接,,从而可得为平行四边形,即可证明平面;(2)只需证明平面.即可证明平面平面;(3)作于,则为与平面所成角,在中,由余弦定理得即可.【详解】(1)证明:取的中点,连接,,∵是菱形的对角线,的交点,∴,且,又∵,且,∴,且,从而为平行四边形,∴,又平面,平面,∴平面;(2)∵四边形为菱形,∴,∵,是的中点,∴,又,∴平面,又平面,∴平面平面;(3)作于,∵平面平面,∴平面,则为与平面所成角,由及四边形为菱形,得为正三角形,则,,,∴为正三角形,从而,在中,由余弦定理,得,∴与平面所成角的余弦值为.【点睛】本题主要考查了空间线面位置关系、线面角的计算,属于中档题.18、(1)0.48(2)()【解析】
(1)计算日用水量小于0.35时,频率分布直方图中长方形面积之和即可;(2)根据频率分布直方图计算出使用电子节水阀后日均节水量的平均值,再求出年节水量即可.【详解】(1)根据直方图,该家庭使用电子节水阀后20天日用水量小于0.35的频率为,因此该家庭使用电子节水阀后日用水量小于0.35的概率的估计值为0.48.(2)该家庭使用了电子节水阀后20天日用水量的平均数为.估计使用电子节水阀后,一年可节省水().【点睛】本题考查对频率分布直方图的理解,以及由频率分布直方图计算平均数,属基础题.19、(1);(2);(3)最大,详见解析;【解析】
(1)易得的横坐标为代入函数即可得纵坐标.(2)易得数列为递减的数列,若要组成三角形则,再代入表达式求解不等式即可.(3)由可知求即可.【详解】(1)由点、点与点构成一个以为顶角顶点的等腰三角形有.故.(2)因为,故为减函数,故,又以、、为边长能构成一个三角形,故即.解得或,又,故.(3)由取(2)中确定的范围内的最小整数,且,故.故,由题当时数列取最大项.故且,计算得当时取最大值.【点睛】本题主要考查了数列与函数的综合题型,需要根据题意找到函数横纵坐标的关系,同时也要列出对应的不等式再化简求解.属于中等题型.20、(1)最小正周期为,单调递减区间为;(2)或【解析】
(1)由向量的数量积的运算公式和三角恒等变换的公式化简可得,再结合三角函数的性质,即可求解.(2)由(1),根据,解得,利用正弦定理,求得,再利用余弦定理列出方程,即可求解.【详解】(1)由题意,向量,,所以,因为,所以函数的最小正周期为,令,解得,所以函数的单调递减区间为.(2)由(1)函数的解析式为,可得,解得,又由,根据正弦定理,可得,因为,所以,所以为锐角,所以,由余弦定理可得,可得,即,解得或.【点睛】本题主要考查了向量的数量积的运算,三角恒等变换的应用,以及正弦定理和余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.21、(1)否;(2);(3);【解析】
(1)根据数列中与的关系式,即可求解数列的通项公式,再结合等差数列的定义,即可求解;(2)由(1)知,求得当时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024高中生物第6章生态环境的保护第2节保护我们共同的家园课堂演练含解析新人教版必修3
- 2024高考历史一轮复习方案专题二代中国反侵略求民主的潮流第6讲新民主主义革命教学案+练习人民版
- 2024年河南工业和信息化职业学院高职单招语文历年参考题库含答案解析
- 2024年长葛市妇幼保健院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年长沙市第七医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 福建省南平市峡阳中学高三语文模拟试卷含解析
- 小学老师-第二学期2022-2024-2025年度述职报告工作总结(31篇)
- 2024年内江职业技术学院高职单招职业适应性测试历年参考题库含答案解析
- 黄山2024年安徽黄山黟县招聘乡村振兴农村专职工作者笔试历年参考题库附带答案详解
- 二零二五版互联网+教育项目居间代理协议2篇
- 机械年终考核述职报告
- 中华传统文化之文学瑰宝学习通超星期末考试答案章节答案2024年
- 2023中华护理学会团体标准-注射相关感染预防与控制
- 2023年外交学院招聘笔试备考试题及答案解析
- 临床研究技术路线图模板
- 12千伏环网柜(箱)标准化设计定制方案(2019版)
- 思想品德鉴定表(学生模板)
- 满堂支架计算
- MA5680T开局配置
- 焊接工艺评定表格(共11页)
- (完整word版)澳大利亚签证54表(家庭构成)
评论
0/150
提交评论