




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年山东省济省实验学校高一数学第二学期期末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数f:R+→R+满足:对任意三个正数x,y,z,均有f().设a,b,c是互不相等的三个正数,则下列结论正确的是()A.若a,b,c是等差数列,则f(a),f(b),f(c)一定是等差数列B.若a,b,c是等差数列,则f(),f(),f()一定是等差数列C.若a,b,c是等比数列,则f(a),f(b),f(c)一定是等比数列D.若a,b,c是等比数列,则f(),f(),f()一定是等比数列2.下列函数中,在区间上是减函数的是()A. B. C. D.3.若圆的圆心在第一象限,则直线一定不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知函数若关于的方程恰有两个互异的实数解,则的取值范围为A. B. C. D.5.设,且,则()A. B. C. D.6.曲线与曲线的()A.长轴长相等 B.短轴长相等C.焦距相等 D.离心率相等7.向正方形ABCD内任投一点P,则“的面积大于正方形ABCD面积的”的概率是()A. B. C. D.8.已知直线,若,则的值为()A.8 B.2 C. D.-29.已知是平面内两个互相垂直的向量,且,若向量满足,则的最大值是()A.1 B. C.3 D.10.设是虚数单位,复数为纯虚数,则实数的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图所示,E,F分别是边长为1的正方形的边BC,CD的中点,将其沿AE,AF,EF折起使得B,D,C三点重合.则所围成的三棱锥的体积为___________.12.某中学为了了解全校学生的阅读情况,在全校采用随机抽样的方法抽取一个样本进行问卷调查,并将他们在一个月内去图书馆的次数进行了统计,将学生去图书馆的次数分为5组:制作了如图所示的频率分布表,则抽样总人数为_______.13.如图是甲、乙两人在10天中每天加工零件个数的茎叶图,若这10天甲加工零件个数的中位数为,乙加工零件个数的平均数为,则______.14.已知数列的前n项和,则数列的通项公式是______.15.已知三个顶点的坐标分别为,若⊥,则的值是______.16.已知,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.做一个体积为,高为2m的长方体容器,问底面的长和宽分别为多少时,所用的材料表面积最少?并求出其最小值.18.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据.(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出回归方程;(3)已知该厂技改前吨甲产品的生产能耗为吨标准煤.试根据(2)求出的线性回归方程,预测生产吨甲产品的生产能耗比技改前降低多少吨标准煤?(注:,)19.在锐角中角,,的对边分别是,,,且.(1)求角的大小;(2)若,求面积的最大值.20.(Ⅰ)已知直线过点且与直线垂直,求直线的方程;(Ⅱ)求与直线的距离为的直线方程.21.关于的不等式的解集为.(1)求实数的值;(2)若,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
令,,,若是等差数列,计算得,进而可得结论.【详解】由题意,,令,,,若是等差数列,则所以,即,故,,成等差数列.若是等比数列,,,与,,既不能成等差数列又不等成等比数列.故选:B.【点睛】本题考查抽象函数的解析式,等差数列的等差中项的性质,属于中档题.2、C【解析】
根据初等函数的单调性对各个选项的函数的解析式进行逐一判断【详解】函数在单调递增,在单调递增.
在单调递减,在单调递增.故选:C【点睛】本题主要考查了基本初等函数的单调性的判断,属于基础试题.3、A【解析】
由圆心位置确定,的正负,再结合一次函数图像即可判断出结果.【详解】因为圆的圆心坐标为,由圆心在第一象限可得,所以直线的斜率,轴上的截距为,所以直线不过第一象限.【点睛】本题主要考查一次函数的图像,属于基础题型.4、D【解析】
画出图象及直线,借助图象分析.【详解】如图,当直线位于点及其上方且位于点及其下方,或者直线与曲线相切在第一象限时符合要求.即,即,或者,得,,即,得,所以的取值范围是.故选D.【点睛】根据方程实根个数确定参数范围,常把其转化为曲线交点个数,特别是其中一条为直线时常用此法.5、B【解析】
利用两角和差正切公式可求得;根据范围可求得;利用两角和差公式计算出;利用两角和差余弦公式计算出结果.【详解】,又本题正确选项:【点睛】本题考查利用三角恒等变换中的两角和差的正余弦和正切公式求解三角函数值的问题,涉及到同角三角函数关系的应用;关键是能够熟练应用两角和差公式进行配凑,求得所需的三角函数值.6、D【解析】
首先将后面的曲线化简为标准形式,分别求两个曲线的几何性质,比较后得出选项.【详解】首先化简为标准方程,,由方程形式可知,曲线的长轴长是8,短轴长是6,焦距是,离心率,,的长轴长是,短轴长是,焦距是,离心率,所以离心率相等.故选D.【点睛】本题考查了椭圆的几何性质,属于基础题型.7、C【解析】
由题意,求出满足题意的点所在区域的面积,利用面积比求概率.【详解】由题意,设正方形的边长为1,则正方形的面积为1,要使的面积大于正方形面积的,需要到的距离大于,即点所在区域面积为,由几何概型得,的面积大于正方形面积的的概率为.故选:C.【点睛】本题考查几何概型的概率求法,解题的关键是明确概率模型,属于基础题.8、D【解析】
根据两条直线垂直,列方程求解即可.【详解】由题:直线相互垂直,所以,解得:.故选:D【点睛】此题考查根据两条直线垂直,求参数的取值,关键在于熟练掌握垂直关系的表达方式,列方程求解.9、D【解析】
设出平面向量的夹角,求出的夹角,最后利用平面向量数量积的运算公式进行化简等式,最后利用辅助角公式求出的最大值.【详解】设平面向量的夹角为,因为是平面内两个互相垂直的向量,所以平面向量的夹角为,因为是平面内两个互相垂直的向量,所以.,,,其中,显然当时,有最大值,即.故选:D【点睛】本题考查平面向量数量积的性质及运算,属于中档题.10、A【解析】,,,故选A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据折叠后不变的垂直关系,结合线面垂直判定定理可得到为三棱锥的高,由此可根据三棱锥体积公式求得结果.【详解】设点重合于点,如下图所示:,,又平面,平面,即为三棱锥的高故答案为:【点睛】本题考查立体几何折叠问题中的三棱锥体积的求解问题,处理折叠问题的关键是能够明确折叠后的不变量,即不变的垂直关系和长度关系.12、20【解析】
总体人数占的概率是1,也可以理解成每个人在整体占的比重一样,所以三组的频率为:,共有14人,即14人占了整体的0.7,那么整体共有人。【详解】前三组,即三组的频率为:,,解得:【点睛】此题考查概率,通过部分占总体的概率即可计算出总体的样本值,属于简单题目。13、44.5【解析】
由茎叶图直接可以求出甲的中位数和乙的平均数,求和即可.【详解】由茎叶图知,甲加工零件个数的中位数为,乙加工零件个数的平均数为,则.【点睛】本题主要考查利用茎叶图求中位数和平均数.14、【解析】
时,,利用时,可得,最后验证是否满足上式,不满足时候,要写成分段函数的形式.【详解】当时,,当时,=,又时,不适合,所以.【点睛】本题考查了由求,注意使用求时的条件是,所以求出后还要验证适不适合,如果适合,要将两种情况合成一种情况作答,如果不适合,要用分段函数的形式作答.属于中档题.15、【解析】
求出,再利用,求得.【详解】,因为⊥,所以,解得:.【点睛】本题考查向量的坐标表示、数量积运算,要注意向量坐标与点坐标的区别.16、【解析】
利用同角三角函数的基本关系求得的值,利用二倍角的正切公式,求得,再利用两角和的正切公式,求得的值,再结合的范围,求得的值.【详解】,,,,,,故答案:.【点睛】本题主要考查同角三角函数的基本关系,两角和的正切公式,二倍角的正切公式,根据三角函数的值求角,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、长和宽均为4m时,最小值为64【解析】
利用体积求得ab=16,只需表示出表面积,结合高为2m,利用基本不等式求出最值即可.【详解】设底面的长和宽分别为,因为体积为32,高为c=2m,所以底面积为16,即ab=16所用材料的面积S=2ab+2bc+2ca=32+4(a+b),当且仅当a=b=4时取等号,答:当底面的长和宽均为4m时,所用的材料表面积最少,其最小值为64【点睛】与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.18、(1)见解析.(2).(3)吨.【解析】
(1)直接描点即可(2)计算出的平均数,,及,,利用公式即可求得,问题得解.(3)将代入可得,结合已知即可得解.【详解】解:(1)把所给的四对数据写成对应的点的坐标,在坐标系中描出来,得到散点图;(2)计算,,,,∴回归方程的系数为:.,∴所求线性回归方程为;(3)利用线性回归方程计算时,,则,即比技改前降低了19.65吨.【点睛】本题主要考查了线性回归方程的求法,考查计算能力,还考查了线性回归方程的应用,属于中档题.19、(1)(2)【解析】
(1)由正弦定理可得,结合,可求出与;(2)由余弦定理可得,结合基本不等式可得,即可求出,从而可求出的最大值.【详解】解:(1)因为,所以,又,所以,又是锐角三角形,则.(2)因为,,,所以,所以,即(当且仅当时取等号),故.【点睛】本题考查了正弦定理、余弦定理在解三角形中的运用,考查了利用基本不等式求最值,考查了学生的计算能力,属于中档题.20、(Ⅰ);(Ⅱ)或.【解析】
(Ⅰ)根据直线与直线垂直,求得直线的斜率为,再利用直线的点斜式方程,即可求解;(Ⅱ)设所求直线方程为,由点到直线的距离公式,列出方程,求得的值,即可得到答案.【详解】(Ⅰ)由题意,设所求直线的斜率为,由直线的斜率为,因为直线与直线垂直,所以直线的斜率为,所以所求直线的方程为直线的方程为:,即.(Ⅱ)设所求直线方程为,即,直线上任取一点,由点到直线的距离公式,可得,解得或-4,所以所求直线方程为:或.【点睛】本题主要考查了直线方程的求解,两直线的位置关系的应用,以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 创“鲁班奖”方案
- 变压器结构简介
- 寝室卫生安全管理制度
- 小区规则宿舍管理制度
- 冻干粉针剂97课件
- 国网公司食堂管理制度
- 医疗资源协助管理制度
- 工地门卫烟酒管理制度
- 培训机构餐厅管理制度
- 原料库房退料管理制度
- 法律文书写作能力测试题库及解答分析
- 2025合作合同范本:两人合伙协议书模板
- DB31/T 595-2021冷库单位产品能源消耗指标
- 2025年宁夏宁东开发投资有限公司招聘笔试参考题库含答案解析
- 小学三年级下册英语(牛津上海一起点)全册语法知识点总结
- 上海市嘉定区2023-2024学年三年级下学期期末数学试卷
- 清洁评标标书答辩评分表
- 《我们走在大路上》歌词
- NHK-2XP350S产品手册
- 华东师范大版初中数学八年级下册 综合与实践 图形的等分 课件(共20张PPT)
- 变配电运行值班员(500kV及以上)技师-机考题库(导出版)
评论
0/150
提交评论