![北京市西城区161中学2024年数学高一下期末检测试题含解析_第1页](http://file4.renrendoc.com/view12/M08/2E/15/wKhkGWZhSPmAYDuqAAIJ1jc1500069.jpg)
![北京市西城区161中学2024年数学高一下期末检测试题含解析_第2页](http://file4.renrendoc.com/view12/M08/2E/15/wKhkGWZhSPmAYDuqAAIJ1jc15000692.jpg)
![北京市西城区161中学2024年数学高一下期末检测试题含解析_第3页](http://file4.renrendoc.com/view12/M08/2E/15/wKhkGWZhSPmAYDuqAAIJ1jc15000693.jpg)
![北京市西城区161中学2024年数学高一下期末检测试题含解析_第4页](http://file4.renrendoc.com/view12/M08/2E/15/wKhkGWZhSPmAYDuqAAIJ1jc15000694.jpg)
![北京市西城区161中学2024年数学高一下期末检测试题含解析_第5页](http://file4.renrendoc.com/view12/M08/2E/15/wKhkGWZhSPmAYDuqAAIJ1jc15000695.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市西城区161中学2024年数学高一下期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,则与夹角的大小为()A. B. C. D.2.已知圆锥的表面积为,且它的侧面展开图是一个半圆,则圆锥的底面半径为A. B. C. D.()3.已知直线与圆C相切于点,且圆C的圆心在y轴上,则圆C的标准方程为()A. B.C. D.4.在三棱锥中,,二面角的大小为,则三棱锥的外接球的表面积为()A. B. C. D.5.在中,已知角的对边分别为,若,,,,且,则的最小角的正切值为()A. B. C. D.6.已知两点,,若点是圆上的动点,则△面积的最小值是A. B.6 C.8 D.7.已知各项均为正数的等比数列,若,则的值为()A.-4 B.4 C. D.08.已知点在第二象限,角顶点为坐标原点,始边为轴的非负半轴,则角的终边落在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.某几何体的三视图如图所示,其外接球体积为()A. B. C. D.10.如图,网格纸上小正方形的边长均为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A.34 B.42 C.54 D.72二、填空题:本大题共6小题,每小题5分,共30分。11.已知等比数列的公比为,它的前项积为,且满足,,,给出以下四个命题:①;②;③为的最大值;④使成立的最大的正整数为4031;则其中正确命题的序号为________12.如图是甲、乙两人在10天中每天加工零件个数的茎叶图,若这10天甲加工零件个数的中位数为,乙加工零件个数的平均数为,则______.13.设是数列的前项和,且,,则__________.14.已知,若数列满足,,则等于________15.在数列中,,当时,.则数列的前项和是_____.16.已知,则三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,且向量与的夹角为.(1)若,求;(2)若与垂直,求.18.在平面直角坐标系中,已知,,动点满足条件.(1)求点的轨迹的方程;(2)设点是点关于直线的对称点,问是否存在点同时满足条件:①点在曲线上;②三点共线,若存在,求直线的方程;若不存在,请说明理由.19.已知中,角的对边分别为.已知,.(Ⅰ)求角的大小;(Ⅱ)设点满足,求线段长度的取值范围.20.在锐角三角形中,分别是角的对边,且.(1)求角的大小;(2)若,求的取值范围.21.在城市旧城改造中,某小区为了升级居住环境,拟在小区的闲置地中规划一个面积为的矩形区域(如图所示),按规划要求:在矩形内的四周安排宽的绿化,绿化造价为200元/,中间区域地面硬化以方便后期放置各类健身器材,硬化造价为100元/.设矩形的长为.(1)设总造价(元)表示为长度的函数;(2)当取何值时,总造价最低,并求出最低总造价.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
。分别求出,,,利用即可得出答案.【详解】设与的夹角为故选:D【点睛】本题主要考查了求向量的夹角,属于基础题.2、C【解析】解:3、C【解析】
先代入点可得,再根据斜率关系列式可得圆心坐标,然后求出半径,写出标准方程.【详解】将切点代入切线方程可得:,解得,设圆心为,所以,解得,所以圆的半径,所以圆的标准方程为.故选:.【点睛】本题考查了直线与圆的位置关系,属中档题.4、D【解析】
取AB中点F,SC中点E,设的外心为,外接圆半径为三棱锥的外接球球心为,由,在四边形中,设,外接球半径为,则则可求,表面积可求【详解】取AB中点F,SC中点E,连接SF,CF,因为则为二面角的平面角,即又设的外心为,外接圆半径为三棱锥的外接球球心为则面,由在四边形中,设,外接球半径为,则则三棱锥的外接球的表面积为故选D【点睛】本题考查二面角,三棱锥的外接球,考查空间想象能力,考查正弦定理及运算求解能力,是中档题5、D【解析】
根据大角对大边判断最小角为,利用正弦定理得到,代入余弦定理计算得到,最后得到.【详解】根据大角对大边判断最小角为根据正弦定理知:根据余弦定理:化简得:故答案选D【点睛】本题考查了正弦定理,余弦定理,意在考查学生的计算能力.6、A【解析】
求得圆的方程和直线方程以及,利用三角换元假设,利用点到直线距离公式和三角函数知识可求得,代入三角形面积公式可求得结果.【详解】由题意知,圆的方程为:,直线方程为:,即设点到直线的距离:,其中当时,本题正确选项:【点睛】本题考查点到直线距离的最值的求解问题,关键是能够利用三角换元的方式将问题转化为三角函数的最值的求解问题.7、B【解析】
根据等比中项可得,再根据,即可求出结果.【详解】由等比中项可知,,又,所以.故选:B.【点睛】本题主要考查了等比中项的性质,属于基础题.8、C【解析】
根据点的位置,得到不等式组,进行判断角的终边落在的位置.【详解】点在第二象限在第三象限,故本题选C.【点睛】本题考查了通过角的正弦值和正切值的正负性,判断角的终边位置,利用三角函数的定义是解题的关键.9、D【解析】
易得该几何体为三棱锥,再根据三视图在长方体中画出该三棱锥,再根据此三棱锥与长方体的外接球相同求解即可.【详解】在长方体中画出该几何体,易得为三棱锥,且三棱锥与该长方体外接球相同.又长方体体对角线等于外接球直径,故.故外接球体积故选:D【点睛】本题主要考查了三视图还原几何体以及求外接球体积的问题,属于基础题.10、C【解析】
还原几何体得四棱锥E﹣ABCD,由图中数据利用椎体的体积公式求解即可.【详解】依三视图知该几何体为四棱锥E﹣ABCD,如图,ABCD是直角梯形,是棱长为6的正方体的一部分,梯形的面积为:12几何体的体积为:13故选:C.【点睛】本题考查三视图求几何体的体积,由三视图正确还原几何体和补形是解题的关键,考查空间想象能力.二、填空题:本大题共6小题,每小题5分,共30分。11、②③【解析】
利用等比数列的性质,可得,得出,进而判断②③④,即可得到答案.【详解】①中,由等比数列的公比为,且满足,,,可得,所以,且所以是错误的;②中,由等比数列的性质,可得,所以是正确的;③中,由,且,,所以前项之积的最大值为,所以是正确的;④中,,所以正确.综上可得,正确命题的序号为②③.故答案为:②③.【点睛】本题主要考查了等比数列的性质的应用,其中解答中熟记等比数列的性质,合理推算是解答的关键,着重考查了推理与运算能力,属于中档试题.12、44.5【解析】
由茎叶图直接可以求出甲的中位数和乙的平均数,求和即可.【详解】由茎叶图知,甲加工零件个数的中位数为,乙加工零件个数的平均数为,则.【点睛】本题主要考查利用茎叶图求中位数和平均数.13、【解析】原式为,整理为:,即,即数列是以-1为首项,-1为公差的等差的数列,所以,即.【点睛】这类型题使用的公式是,一般条件是,若是消,就需当时构造,两式相减,再变形求解;若是消,就需在原式将变形为:,再利用递推求解通项公式.14、【解析】
根据首项、递推公式,结合函数的解析式,求出的值,可以发现数列是周期数列,求出周期,利用数列的周期性可以求出的值.【详解】,所以数列是以5为周期的数列,因为20能被5整除,所以.【点睛】本题考查了数列的周期性,考查了数学运算能力.15、【解析】
先利用累加法求出数列的通项公式,然后将数列的通项裂开,利用裂项求和法求出数列的前项和.【详解】当时,.所以,,,,,.上述等式全部相加得,.,因此,数列的前项和为,故答案为:.【点睛】本题考查累加法求数列通项和裂项法求和,解题时要注意累加法求通项和裂项法求和对数列递推公式和通项公式的要求,考查运算求解能力,属于中等题.16、28【解析】试题分析:由等差数列的前n项和公式,把等价转化为所以,然后求得a值.考点:极限及其运算三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)根据平面向量的数量积公式计算的值;(2)根据两向量垂直数量积为0,列方程求出cosθ的值和对应角θ的值.【详解】(1)因为,所以(2)因为与垂直,所以即,所以又,所以【点睛】本题考查了平面向量的数量积与模长和夹角的计算问题,是基础题.18、(1);(2)存在点,直线方程为.【解析】
(1)设,由题意根据两点间的距离公式即可求解.(2)假设存在点满足题意,此时直线的方程为:.设,,根据题意可得,求出,再将直线与圆联立求出,根据向量共线的坐标表示以及点在圆上,求出即可求解.【详解】(1)设,由得,整理得:,所以点的轨迹方程为.(2)假设存在点满足题意,此时直线的方程为:.设,.因为与关于直线对称,所以解得即.由,得,即.此时,,,所以,所以当时,三点共线.若在曲线上,则,整理得,即,所以,即.综上所述,存在点,满足条件①②,此时直线方程为.【点睛】本小题主要考查坐标法、圆的标准方程、直线与圆的位置关系等基础知识,考查抽象概括能力、运算求解能力,考查数形结合思想、整体运算思想,化归与转化思想等.19、(Ⅰ)(Ⅱ)【解析】
(I)利用数量积的定义和三角形面积公式可求得,从而得角;(II)由得,平方后可求得,即中线长,结合可得最小值,从而得取值范围.【详解】(Ⅰ)因为,所以因为,所以得以两式相除得所以(Ⅱ)因为,所以因为,所以所以所以.当且仅当时取得等号所以线段长度的取值范围时.【点睛】本题考查平面向量的数量积,考查平面向量的线性运算、三角形面积公式,解题关键是把中线向量表示为,这样把线段长度(向量模)转化为向量的数量积.20、(1);(2)【解析】
(1)利用正弦定理边化角,可整理求得,根据三角形为锐角三角形可确定的取值;(2)利用正弦定理可将转化为,利用两角和差正弦公式、辅助角公式整理得到,根据的范围可求得正弦型函数的值域,进而得到所求取值范围.【详解】(1)由正弦定理得:为锐角三角形,,即(2)由正弦定理得:为锐角三角形,,即【点睛】本题考查正弦定理边化角的应用、边长之和的范围的求解问题;求解边长之和范围问题的关键是能够利用正弦定理将问题转化为三角函数值域的求解问题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社区孤独症患者关怀的个人方法计划
- 分配任务与跟进进度的秘书工作计划
- 品牌资产与市场风险的关联研究计划
- 全面提升团队绩效的年度规划计划
- 强化职能部门之间的配合计划
- 如何选择合适的品牌推广渠道计划
- 2025年物位仪项目建议书
- 2025年数字货币金融项目发展计划
- 2025年沥青试验仪器项目发展计划
- 新员工入职引导及工作流程简明教程
- 人教版高中英语挖掘文本深度学习-选修四-UNIT-2-(答案版)
- 八下冀教版英语单词表
- 钢铁是怎样炼成的钢铁读书笔记
- 【人教版化学】选择性必修2 知识点默写小纸条(答案背诵版)
- 2025年汽车加气站作业人员安全全国考试题库(含答案)
- 部编高教版2023·职业模块 中职语文 《宁夏闽宁镇:昔日干沙滩今日金沙滩》课件
- 化工过程安全管理导则安全仪表管理课件
- 企业对外沟通与形象塑造制度
- 《前列腺增生》课件
- 供应链经理年度工作计划
- 中国高血压防治指南-解读全篇
评论
0/150
提交评论