版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市首都师范大学附属回龙观育新学校2024届数学高一下期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知tan(α+π5A.1B.-57C.2.已知全集,集合,,则为()A.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4}3.在△ABC中,内角A,B,C的对边分别是a,b,c,若cosB=,=2,且S△ABC=,则b的值为()A.4 B.3 C.2 D.14.三棱锥的高,若,二面角为,为的重心,则的长为()A. B. C. D.5.等差数列满足,则其前10项之和为()A.-9 B.-15 C.15 D.6.设为直线,是两个不同的平面,下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则7.函数在上的图像大致为()A. B.C. D.8.设等差数列的前项和为,,,则()A. B. C. D.9.如图是一个边长为3的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷1089个点,其中落入白色部分的有484个点,据此可估计黑色部分的面积为()A.4 B.5 C.8 D.910.等比数列中,,,则公比等于()A.2 B.3 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,角所对的边分别为,,则____12.设为,的反函数,则的值域为______.13.已知在数列中,且,若,则数列的前项和为__________.14.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为_________.15.若、分别是方程的两个根,则______.16._________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在ΔABC中,角A,B,C的对边分别为a,b,c,a=8,c-1(1)若ΔABC有两解,求b的取值范围;(2)若ΔABC的面积为82,B>C,求b-c18.如图,在中,已知点D在边BC上,,的面积是面积的倍,且,.(1)求;(2)求边BC的长.19.设数列的前项和为,已知(Ⅰ)求,并求数列的通项公式;(Ⅱ)求数列的前项和.20.如图,在三棱锥中,点,分别是,的中点,,.求证:⑴平面;⑵.21.已知.(1)求的坐标;(2)设,求数列的通项公式;(3)设,,其中为常数,,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】∵α-β+π=(α+π∴tan=2+3tan(α-β)=2、C【解析】
先根据全集U求出集合A的补集,再求与集合B的并集.【详解】由题得,故选C.【点睛】本题考查集合的运算,属于基础题.3、C【解析】试题分析:根据正弦定理可得,.在中,,.,,.,.故C正确.考点:1正弦定理;2余弦定理.4、C【解析】
根据AB=AC,取BC的中点E,连结AE,得到AE⊥BC,再由由AH⊥平面BCD,得到EH⊥BC.,所以∠GEH是二面角的平面角,然后在△GHE中,利用余弦定理求解.【详解】:如图所示:取BC的中点E,连结AE,∵AB=AC,∴AE⊥BC,且点G在中线AE上,连结HE.∵AH⊥平面BCD,∴EH⊥BC.∴∠GEH=60°.在Rt△AHE中,∵∠AEH=60°,AH=∴EH=AHtan30°=3,AE=6,GE=AE=2由余弦定理得HG2=9+4-2×3×2cos60°=7.∴HG=故选:C【点睛】本题主要考查了二面角问题,还考查了空间想象和推理论证的能力,属于中档题.5、D【解析】由已知(a4+a7)2=9,所以a4+a7=±3,从而a1+a10=±3.所以S10=×10=±15.故选D.6、B【解析】A中,也可能相交;B中,垂直与同一条直线的两个平面平行,故正确;C中,也可能相交;D中,也可能在平面内.【考点定位】点线面的位置关系7、A【解析】
利用函数的奇偶性和函数图像上的特殊点,对选项进行排除,由此得出正确选项.【详解】由于,所以函数为奇函数,图像关于原点对称,排除C选项.由于,所以排除D选项.由于,所以排除B选项.故选:A.【点睛】本小题主要考查函数图像的识别,考查函数的奇偶性、特殊点,属于基础题.8、A【解析】
利用等差数列的基本量解决问题.【详解】解:设等差数列的公差为,首项为,因为,,故有,解得,,故选A.【点睛】本题考查了等差数列的通项公式与前项和公式,解决问题的关键是熟练运用基本量法.9、B【解析】
由几何概型中的随机模拟试验可得:,将正方形面积代入运算即可.【详解】由题意在正方形区域内随机投掷1089个点,其中落入白色部分的有484个点,则其中落入黑色部分的有605个点,由随机模拟试验可得:,又,可得,故选B.【点睛】本题主要考查几何概型概率公式以及模拟实验的基本应用,属于简单题,求不规则图形的面积的主要方法就是利用模拟实验,列出未知面积与已知面积之间的方程求解.10、A【解析】
由题意利用等比数列的通项公式,求出公比的值.【详解】解:等比数列中,,,,则公比,故选:.【点睛】本题主要考查等比数列的通项公式的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用正弦定理将边角关系式中的边都化成角,再结合两角和差公式进行整理,从而得到.【详解】由正弦定理可得:即:本题正确结果:【点睛】本题考查李用正弦定理进行边角关系式的化简问题,属于常规题.12、【解析】
求出原函数的值域可得出其反函数的定义域,取交集可得出函数的定义域,再由函数的单调性可求出该函数的值域.【详解】函数在上为增函数,则函数的值域为,所以,函数的定义域为.函数的定义域为,由于函数与函数单调性相同,可知,函数在上为增函数.当时,函数取得最小值;当时,函数取得最大值.因此,函数的值域为.故答案为:.【点睛】本题考查函数值域的求解,考查函数单调性的应用,明确两个互为反函数的两个函数具有相同的单调性是解题的关键,考查分析问题和解决问题的能力,属于中等题.13、【解析】
根据递推关系式可证得数列为等差数列,利用等差数列通项公式求得,得到,进而求得;利用裂项相消法求得结果.【详解】由得:数列是首项为,公差为的等差数列,即:设前项和为本题正确结果:【点睛】本题考查根据递推关系式证明数列为等差数列、等差数列通项的求解、裂项相消法求数列的前项和;关键是能够通过通项公式的形式确定采用的求和方法,属于常考题型.14、0.5【解析】
由互斥事件的概率加法求出射手在一次射击中超过8环的概率,再利用对立事件的概率求出不超过8环的概率即可.【详解】由题意,射中10环、9环、8环的概率分别为0.2、0.3、0.1,所以射手的一次射击中超过8环的概率为:0.2+0.3=0.5故射手的一次射击中不超过8环的概率为:1-0.5=0.5故答案为0.5【点睛】本题主要考查了对立事件的概率,属于基础题.15、【解析】
利用韦达定理可求出和的值,然后利用两角和的正切公式可计算出的值.【详解】由韦达定理得,,因此,.故答案为:.【点睛】本题考查利用两角和的正切公式求值,同时也考查了一元二次方程根与系数的关系,考查计算能力,属于基础题.16、3【解析】
分式上下为的二次多项式,故上下同除以进行分析.【详解】由题,,又,故.
故答案为:3.【点睛】本题考查了分式型多项式的极限问题,注意:当时,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(8,62);(2)【解析】
(1)由c-13b=acosB,利用正弦定理可得sinC-13sinB=sin【详解】(1)∵c-1∴sinC-∴sinA即sin∵sinB≠0,∴cosA=1若ΔABC有两解,∴bsin解得8<b<62,即b的取值范围为((2)由(1)知,SΔABC=1∵a2=b∴(b-c)2∵B>C,∴b-c=42【点睛】解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.18、(1);(2)【解析】
(1)利用三角形面积公式得出和的表达式,由,化简得出的值;(2)由结合,得出,在中,利用余弦定理得出,再由余弦定理得出,进而得出,由直角三角形的边角关系得出,最后由得出的长.【详解】(1)因为,,且,所以即,所以.(2)由(1)知,所以在中,,,由余弦定理所以.且所以,解得.所以.即边BC的长为.【点睛】本题主要考查了三角形面积公式以及余弦定理的应用,属于中档题.19、(1),;(2).【解析】试题分析:本题主要考查由求、等比数列的通项公式、等比数列的前n项和公式、错位相减法等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,由求,利用,分两部分求和,经判断得数列为等比数列;第二问,结合第一问的结论,利用错位相减法,结合等比数列的前n项和公式,计算化简.试题解析:(Ⅰ)时所以时,是首项为、公比为的等比数列,,.(Ⅱ)错位相减得:.考点:求、等比数列的通项公式、等比数列的前n项和公式、错位相减法.20、(1)见证明;(2)见证明【解析】
(1)由中位线定理即可说明,由此证明平面;(2)首先证明平面,由线面垂直的性质即可证明【详解】证明:⑴因为在中,点,分别是,的中点所以又因平面,平面从而平面⑵因为点是的中点,且所以又因,平面,平面,故平面因为平面所以【点睛】本题考查线面平行、线面垂直的判定以及线面垂直的性质,属于基础题.21、(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环保公司解除租赁协议
- 污水处理招投标委托书范例
- 农业物流服务合同管理指南
- 文化产业严禁参与盗版侵权承诺书
- 公共广场地砖铺设合同
- 建筑加固改造升级劳务协议
- 上海市工业园区基础设施施工合同
- 医疗机构用工规范承诺书
- 石油开采设备日常养护管理办法
- 渔业捕捞与加工合同
- 2022年火力发电建设工程启动试运及验收规程
- 妇产科病史采集临床思维
- 资产评估的应急措施
- 5G定制网核心网练习试题附答案
- 背景调查表(标准样本)
- 汽车构造复习
- 【酒店人力资源管理问题研究文献综述3000字】
- 读书分享交流会《亲爱的安德烈》课件
- 2022年英语二真题(含答案及解析)【可编辑】
- 月度安全管理综合考核表
- 以案说法发言材料范文九篇
评论
0/150
提交评论