版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省泸州市泸县二中2025届高一数学第二学期期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设A,B是任意事件,下列哪一个关系式正确的()A.A+B=A B.ABA C.A+AB=A D.A2.从装有红球和绿球的口袋内任取2个球(其中红球和绿球都多于2个),那么互斥而不对立的两个事件是()A.至少有一个红球,至少有一个绿球B.恰有一个红球,恰有两个绿球C.至少有一个红球,都是红球D.至少有一个红球,都是绿球3.已知圆和圆只有一条公切线,若,且,则的最小值为()A.2 B.4 C.8 D.94.若,则与夹角的余弦值为()A. B. C. D.15.在各项均为正数的等比数列中,公比,若,,,数列的前项和为,则取最大值时,的值为()A. B. C. D.或6.某几何体的三视图如图所示,则该几何体的体积是()A. B. C. D.7.如图,已知正三棱柱的底面边长为2cm,高为5cm,则一质点自点A出发,沿着三棱柱的侧面绕行两周到达点的最短路线的长为()cm.A.12 B.13 C.14 D.158.如图,在圆心角为直角的扇形中,分别以为直径作两个半圆,在扇形内随机取一点,则此点取自阴影部分的概率是()A. B. C. D.9.在中,角的对边分别是,,则的形状为A.直角三角形 B.等腰三角形或直角三角形C.等腰直角三角形 D.正三角形10.设P是所在平面内的一点,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若向量,则与夹角的余弦值等于_____12.在△ABC中,若a2=b2+bc+c2,则A=________.13.若等比数列的各项均为正数,且,则等于__________.14.数列的前项和,则__________.15.在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终边过点,则_______;_______.16.等比数列中前n项和为,且,,,则项数n为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到下表数据:单价(元)销量(件)且,,(1)已知与具有线性相关关系,求出关于回归直线方程;(2)解释回归直线方程中的含义并预测当单价为元时其销量为多少?18.已知点,圆.(1)求过点M的圆的切线方程;(2)若直线与圆相交于A,B两点,且弦AB的长为,求的值.19.已知圆心为的圆过点,且与直线相切于点。(1)求圆的方程;(2)已知点,且对于圆上任一点,线段上存在异于点的一点,使得(为常数),试判断使的面积等于4的点有几个,并说明理由。20.如图,墙上有一壁画,最高点离地面4米,最低点离地面2米,观察者从距离墙米,离地面高米的处观赏该壁画,设观赏视角(1)若问:观察者离墙多远时,视角最大?(2)若当变化时,求的取值范围.21.已知函数.(1)证明函数在定义域上单调递增;(2)求函数的值域;(3)令,讨论函数零点的个数.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
试题分析:因为题目中给定了A,B是任意事件,那么利用集合的并集思想来分析,两个事件的和事件不一定等于其中的事件A.可能大于事件A选项B,AB表示的为AB的积事件,那么利用集合的思想,和交集类似,不一定包含A事件.选项C,由于利用集合的交集和并集的思想可知,A+AB=A表示的等式成立.选项D中,利用补集的思想和交集的概念可知,表示的事件A不发生了,同时事件B发生,显然D不成立.考点:本试题考查了事件的关系.点评:对于事件之间的关系的理解,可以运用集合中的交集,并集和补集的思想分别对应到事件中的和事件,积事件,非事件上来分析得到,属于基础题.【详解】请在此输入详解!2、B【解析】由于从口袋中任取2个球有三个事件,恰有一个红球,恰有两个绿球,一红球和一绿球.所以恰有一个红球,恰有两个绿球是互斥而不对立的两个事件.因而应选B.3、D【解析】
由题意可得两圆相内切,根据两圆的标准方程求出圆心和半径,可得,再利用“1”的代换,使用基本不等式求得的最小值.【详解】解:由题意可得两圆相内切,两圆的标准方程分别为,,圆心分别为,,半径分别为2和1,故有,,,当且仅当时,等号成立,的最小值为1.故选:.【点睛】本题考查两圆的位置关系,两圆相内切的性质,圆的标准方程的特征,基本不等式的应用,得到是解题的关键和难点.4、A【解析】
根据向量的夹角公式,准确运算,即可求解,得到答案.【详解】由向量,则与夹角的余弦值为,故选A.【点睛】本题主要考查了向量的夹角公式的应用,其中解答中熟记向量的夹角公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.5、D【解析】
利用等比数列的性质求出、的值,可求出和的值,利用等比数列的通项公式可求出,由此得出,并求出数列的前项和,然后求出,利用二次函数的性质求出当取最大值时对应的值.【详解】由题意可知,由等比数列的性质可得,解得,所以,解得,,,则数列为等差数列,,,,因此,当或时,取最大值,故选:D.【点睛】本题考查等比数列的性质,同时也考查了等差数列求和以及等差数列前项和的最值,在求解时将问题转化为二次函数的最值求解,考查方程与函数思想的应用,属于中等题.6、A【解析】
观察可知,这个几何体由两部分构成,:一个半圆柱体,底面圆的半径为1,高为2;一个半球体,半径为1,按公式计算可得体积。【详解】设半圆柱体体积为,半球体体积为,由题得几何体体积为,故选A。【点睛】本题通过三视图考察空间识图的能力,属于基础题。7、B【解析】
将三棱柱的侧面展开,得到棱柱的侧面展开图,利用矩形的对角线长,即可求解.【详解】将正三棱柱沿侧棱展开两次,得到棱柱的侧面展开图,如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,即为三棱柱的侧面上所求距离的最小值,由已知求得的长等于,宽等于,由勾股定理得,故选B.【点睛】本题主要考查了棱柱的结构特征,以及棱柱的侧面展开图的应用,着重考查了空间想象能力,以及转化思想的应用,属于基础题.8、A【解析】试题分析:设扇形半径为,此点取自阴影部分的概率是,故选B.考点:几何概型.【方法点晴】本题主要考查几何概型,综合性较强,属于较难题型.本题的总体思路较为简单:所求概率值应为阴影部分的面积与扇形的面积之比.但是,本题的难点在于如何求阴影部分的面积,经分析可知阴影部分的面积可由扇形面积减去以为直径的圆的面积,再加上多扣一次的近似“椭圆”面积.求这类图形面积应注意切割分解,“多还少补”.9、A【解析】
先根据二倍角公式化简,再根据正弦定理化角,最后根据角的关系判断选择.【详解】因为,所以,,因此,选A.【点睛】本题考查二倍角公式以及正弦定理,考查基本分析转化能力,属基础题.10、B【解析】移项得.故选B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用坐标运算求得;根据平面向量夹角公式可求得结果.【详解】本题正确结果:【点睛】本题考查向量夹角的求解,明确向量夹角的余弦值等于向量的数量积除以两向量模长的乘积.12、120°【解析】∵a2=b2+bc+c2,∴b2+c2-a2=-bc,∴cosA===-,又∵A为△ABC的内角,∴A=120°故答案为:120°13、50【解析】由题意可得,=,填50.14、【解析】
根据数列前项和的定义即可得出.【详解】解:因为所以.故答案为:.【点睛】考查数列的定义,以及数列前项和的定义,属于基础题.15、【解析】
根据三角函数的定义直接求得的值,即可得答案.【详解】∵角终边过点,,∴,,,∴.故答案为:;.【点睛】本题考查三角函数的定义,考查运算求解能力,属于基础题.16、6【解析】
利用等比数列求和公式求得,再利用通项公式求解n即可【详解】,代入,,得,又,得.故答案为:6【点睛】本题考查等比数列的通项公式及求和公式的基本量计算,熟记公式准确计算是关键,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)销量为件.【解析】
(1)利用最小二乘法的公式求得与的值,即可求出线性回归方程;(2)的含义是单价每增加1元,该产品的销量将减少7件;在(1)中求得的回归方程中,取求得值,即可得到单价为12元时的销量.【详解】(1)由题意得:,,,,关于回归直线方程为;(2)的含义是单价每增加元,该产品的销量将减少件;当时,,即当单价为元时预测其销量为件.【点睛】本题主要考查线性回归方程的求法—最小二乘法,以及利用线性回归方程进行预测估计。18、(1)或.(2)【解析】
(1)分切线的斜率不存在与存在两种情况分析.当斜率存在时设方程为,再根据圆心到直线的距离等于半径求解即可.(2)利用垂径定理根据圆心到直线的距离列出等式求解即可.【详解】解:(1)由题意知圆心的坐标为,半径,当过点M的直线的斜率不存在时,方程为.由圆心到直线的距离知,此时,直线与圆相切.当过点M的直线的斜率存在时,设方程为,即.由题意知,解得,∴方程为.故过点M的圆的切线方程为或.(2)∵圆心到直线的距离为,∴,解得.【点睛】本题主要考查了直线与圆相切与相交时的求解.注意直线过定点时分析斜率不存在与存在两种情况.直线与圆相切用圆心到直线的距离等于半径列式,直线与圆相交用垂径定理列式.属于中档题.19、(1)(2)使的面积等于4的点有2个【解析】
(1)利用条件设圆的标准方程,由圆过点求t,确定圆方程.(2)设,由确定阿波罗尼斯圆方程,与圆C为同一圆,可得,求出N点的坐标,建立ON方程,,再利用面积求点P到直线的距离,判断与ON平行且距离为的两条直线与圆C的位置关系可得结论.【详解】(1)依题意可设圆心坐标为,则半径为,圆的方程可写成,因为圆过点,∴,∴,则圆的方程为。(2)由题知,直线的方程为,设满足题意,设,则,所以,则,因为上式对任意恒成立,所以,且,解得或(舍去,与重合)。所以点,则,直线方程为,点到直线的距离,若存在点使的面积等于4,则,∴。①当点在直线的上方时,点到直线的距离的取值范围为,∵,∴当点在直线的上方时,使的面积等于4的点有2个;②当点在直线的下方时,点到直线的距离的取值范围为,∵,∴当点在直线的下方时,使的面积等于4的点有0个,综上可知,使的面积等于4的点有2个。【点睛】本题考查圆的方程,直线与圆的位置关系,圆的第二定义,考查运算能力,分析问题解决问题的能力,属于难题.20、(1)(2)3≤x≤1.【解析】试题分析:(1)利用两角差的正切公式建立函数关系式,根据基本不等式求最值,最后根据正切函数单调性确定最大时取法,(2)利用两角差的正切公式建立等量关系式,进行参变分离得,再根据a的范围确定范围,最后解不等式得的取值范围.试题解析:(1)当时,过作的垂线,垂足为,则,且,由已知观察者离墙米,且,则,所以,,当且仅当时,取“”.又因为在上单调增,所以,当观察者离墙米时,视角最大.(2)由题意得,,又,所以,所以,当时,,所以,即,解得或,又因为,所以,所以的取值范围为.21、(1)证明见解析;(2);(3)当时,没有零点;当时,有且仅有一个零点【解析】
(1)求出函数定义域后直接用定义法即可证明;(2)由题意得,对两边同时平方得,求出的取值范围即可得解;(3)转化条件得,令,利用二次函数的性质分类讨论即可得解.【详解】(1)证明:令,解得,故函数的定义域为令,由,可得,所以,,故即,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重归课堂重拾希望重修保证书
- 医院食堂外包招标竞争格局分析
- 网站维护外包协议
- 打架悔过书决心改正
- 售后服务协议合同示例
- 工程按时交付宣言
- 安全检测与评估服务合同
- 2024年度国际人才交流与合作协议
- 标准分包及劳务承包合同
- 标准合同解除协议范本
- 北师大版(2019)高中英语必修第三册单词表默写练习(英译中、中译英)
- 2023铁矿石 钍含量的测定偶氮胂Ⅲ分光光度法
- 人工湖清理淤泥施工方案
- 辽宁省大连市甘井子区2023-2024学年七年级上学期期中考试语文试题
- (17.6)-第五讲 马克思主义的鲜明特征
- 军事理论考试卷
- 40万豪华装修清单
- 浅谈新课标下的小学英语课堂教学
- 江苏省住宅物业委托服务合同(示范文本)
- 新产品风险分析报告
- 网络安全教育ppt课件(图文)
评论
0/150
提交评论