安徽省黄山市徽州区第一中学2025届高一下数学期末达标检测模拟试题含解析_第1页
安徽省黄山市徽州区第一中学2025届高一下数学期末达标检测模拟试题含解析_第2页
安徽省黄山市徽州区第一中学2025届高一下数学期末达标检测模拟试题含解析_第3页
安徽省黄山市徽州区第一中学2025届高一下数学期末达标检测模拟试题含解析_第4页
安徽省黄山市徽州区第一中学2025届高一下数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省黄山市徽州区第一中学2025届高一下数学期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列关于四棱柱的说法:①四条侧棱互相平行且相等;②两对相对的侧面互相平行;③侧棱必与底面垂直;④侧面垂直于底面.其中正确结论的个数为()A.1 B.2 C.3 D.42.若圆的半径为4,a、b、c为圆的内接三角形的三边,若abc=16,则三角形的面积为()A.2 B.8 C. D.3.设均为正数,且,,.则()A. B. C. D.4.设满足约束条件,则的最大值为()A.3 B.9 C.12 D.155.函数的简图是()A. B. C. D.6.如图是正方体的展开图,则在这个正方体中:①与平行;②与是异面直线;③与成60°角;④与垂直.以上四个命题中,正确命题的序号是A.①②③ B.②④ C.③④ D.②③④7.下列各角中与角终边相同的是()A. B. C. D.8.已知直线l的方程为2x+3y=5,点P(a,b)在l上位于第一象限内的点,则的最小值为()A. B. C. D.9.等差数列中,,,下列结论错误的是()A.,,成等比数列 B.C. D.10.的内角的对边分别为,分别根据下列条件解三角形,其中有两解的是()A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.在数列中,,,若,则的前项和取得最大值时的值为__________.12.若,则的值为_______.13.已知向量,则的单位向量的坐标为_______.14.已知,则__________.15.函数的最小正周期为_______.16.某奶茶店的日销售收入y(单位:百元)与当天平均气温x(单位:)之间的关系如下:x012y5221通过上面的五组数据得到了x与y之间的线性回归方程:;但现在丢失了一个数据,该数据应为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列,,,且.(1)设,证明数列是等比数列,并求数列的通项;(2)若,并且数列的前项和为,不等式对任意正整数恒成立,求正整数的最小值.(注:当时,则)18.在△ABC中,中线长AM=2.(1)若=-2,求证:++=0;(2)若P为中线AM上的一个动点,求·(+)的最小值.19.在中,角、、的对边分别为、、,为的外接圆半径.(1)若,,,求;(2)在中,若为钝角,求证:;(3)给定三个正实数、、,其中,问:、、满足怎样的关系时,以、为边长,为外接圆半径的不存在,存在一个或存在两个(全等的三角形算作同一个)?在存在的情兄下,用、、表示.20.四棱柱中,底面为正方形,,为中点,且.(1)证明;(2)求点到平面的距离.21.设全集为实数集,,,.(1)若,求实数的取值范围;(2)若,且,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据棱柱的概念和四棱锥的基本特征,逐项进行判定,即可求解,得到答案.【详解】由题意,根据棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱,侧棱垂直于底面的四棱柱叫做直四棱柱,由四棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等,①正确;②两对相对的侧面互相平行,不正确,如下图:左右侧面不平行.本题题目说的是“四棱柱”不一定是“直四棱柱”,所以,③④不正确,故选A.【点睛】本题主要考查了四棱柱的概念及其应用,其中解答中熟记棱柱的概念以及四棱锥的基本特征是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.2、C【解析】

试题分析:由正弦定理可知,∴,∴.考点:正弦定理的运用.3、A【解析】试题分析:在同一坐标系中分别画出,,的图象,与的交点的横坐标为,与的图象的交点的横坐标为,与的图象的交点的横坐标为,从图象可以看出.考点:指数函数、对数函数图象和性质的应用.【方法点睛】一般一个方程中含有两个以上的函数类型,就要考虑用数形结合求解,在同一坐标系中画出两函数图象的交点,函数图象的交点的横坐标即为方程的解.4、C【解析】所以,过时,的最小值为12。故选C。5、D【解析】

变形为,求出周期排除两个选项,再由函数值正负排除一个,最后一个为正确选项.【详解】函数的周期是,排除AB,又时,,排除C.只有D满足.故选:D.【点睛】本题考查由函数解析式选图象,可通过研究函数的性质如单调性、奇偶性、周期性、对称性等排除某些选项,还可求出特殊值,特殊点,函数值的正负,函数值的变化趋势排除一些选项,从而得出正确选项.6、C【解析】

将正方体的展开图还原为正方体后,即可得到所求正确结论.【详解】将正方体的展开图还原为正方体ABCD﹣EFMN后,可得AF,CN异面;BM,AN平行;连接AN,NF,可得∠FAN为AF,BM所成角,且为60°;BN⊥DE,DE⊥AB可得DE⊥平面ABN,可得DE⊥BN,可得③④正确,故选C.【点睛】本题考查展开图与空间几何体的关系,考查空间线线的位置关系的判断,属于基础题.7、D【解析】

写出与终边相同的角,取值得答案.【详解】解:与终边相同的角为,,取,得,与终边相同.故选:D.【点睛】本题考查终边相同角的表示法,属于基础题.8、C【解析】

由题意可得2a+3b=5,a,b>0,可得4a=10﹣6b,(3b<5),将所求式子化为b的关系式,由基本不等式可得所求最小值.【详解】直线l的方程为2x+3y=5,点P(a,b)在l上位于第一象限内的点,可得2a+3b=5,a,b>0,可得4a=10﹣6b,(3b<5),则[(11﹣6b)+(9+6b)]()(7),当且仅当时,即b,a,上式取得最小值,故选:C.【点评】本题考查基本不等式的运用:求最值,考查变形能力和化简运算能力,属于中档题.9、C【解析】

根据条件得到公差,然后得到等差数列的通项,从而对四个选项进行判断,得到答案.【详解】等差数列中,,所以,所以,所以,,,,,,,,,所以,所以,,成等比数列,故A选项正确,,故B选项正确,,故C选项错误,,故D选项正确.故选:C.【点睛】本题考查求等差数列的项,等差数列求前项的和,属于简单题.10、D【解析】

运用正弦定理公式,可以求出另一边的对角正弦值,最后还要根据三角形的特点:“大角对大边”进行合理排除.【详解】A.,由所以不存在这样的三角形.B.,由且所以只有一个角BC.中,同理也只有一个三角形.D.中此时,所以出现两个角符合题意,即存在两个三角形.所以选择D【点睛】在直接用正弦定理求另外一角中,求出后,记得一定要去判断是否会出现两个角.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

解法一:利用数列的递推公式,化简得,得到数列为等差数列,求得数列的通项公式,得到,,得出所以,,,,进而得到结论;解法二:化简得,令,求得,进而求得,再由,解得或,即可得到结论.【详解】解法一:因为①所以②,①②,得即,所以数列为等差数列.在①中,取,得即,又,则,所以.因此,所以,,,所以,又,所以时,取得最大值.解法二:由,得,令,则,则,即,代入得,取,得,解得,又,则,故所以,于是.由,得,解得或,又因为,,所以时,取得最大值.【点睛】本题主要考查了数列的综合应用,以及数列的最值问题的求解,此类题目是数列问题中的常见题型,对考生计算能力要求较高,解答中确定通项公式是基础,合理利用数列的性质是关键,能较好的考查考生的数形结合思想、逻辑思维能力及基本计算能力等,属于中档试题.12、【解析】

把已知等式展开利用二倍角余弦公式及两角和的余弦公式,整理后两边平方求解.【详解】解:由,得,,则,两边平方得:,即.故答案为.【点睛】本题考查三角函数的化简求值,考查倍角公式的应用,是基础题.13、.【解析】

由结论“与方向相同的单位向量为”可求出的坐标.【详解】,所以,,故答案为.【点睛】本题考查单位向量坐标的计算,考查共线向量的坐标运算,充分利用共线单位向量的结论可简化计算,考查运算求解能力,属于基础题.14、【解析】

对已知等式的左右两边同时平方,利用同角的三角函数关系式和二倍角的正弦公式,可以求出的值,再利用二倍角的余弦公式可以求出.【详解】因为,所以,即,所以.【点睛】本题考查了同角的三角函数关系,考查了二倍角的正弦公式和余弦公式,考查了数学运算能力.15、【解析】

将三角函数进行降次,然后通过辅助角公式化为一个名称,最后利用周期公式得到结果.【详解】,.【点睛】本题主要考查二倍角公式,及辅助角公式,周期的运算,难度不大.16、4【解析】

根据回归直线经过数据的中心点可求.【详解】设丢失的数据为,则,,把代入回归方程可得,故答案为:4.【点睛】本题主要考查回归直线的特征,明确回归直线一定经过样本数据的中心点是求解本题的关键,侧重考查数学运算的核心素养.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,(2)10【解析】

(1)根据等比数列的定义,结合题中条件,计算,,即可证明数列是等比数列,求出;再根据累加法,即可求出数列的通项;(2)根据题意,得到,分别求出,当,用放缩法得,根据裂项相消法求,进而可求出结果.【详解】(1)证明:,而∴是以4为首项2为公比的等比数列,,∴即,,所以,,......,,以上各式相加得:;∴;(2)由(1)得:,,,,,由已知条件知当时,,即∴,而综上所述得最小值为10.【点睛】本题主要考查证明数列为等比数列,求数列的通项公式,以及数列的应用,熟记等比数列的概念,累加法求数列的通项公式,以及裂项相消法求数列的和等即可,属于常考题型.18、(1)见解析;(2)最小值-2.【解析】

试题分析:(1)∵M是BC的中点,∴=(+).代入=-2,得=--,即++=0(2)若P为中线AM上的一个动点,若AM=2,我们易将·(+),转化为-2||||=2(x-1)2-2的形式,然后根据二次函数在定区间上的最值的求法,得到答案.试题解析:(1)证明:∵M是BC的中点,∴=(+)代入=-2,得=--,即++=0(2)设||=x,则||=2-x(0≤x≤2)∵M是BC的中点,∴+=2∴·(+)=2·=-2||||=-2x(2-x)=2(x2-2x)=2(x-1)2-2,当x=1时,取最小值-2考点:平面向量数量积的运算.【详解】请在此输入详解!19、(1);(2)见解析;(3)见解析.【解析】

(1)利用正弦定理求出的值,然后利用余弦定理求出的值;(2)由余弦定理得出可得证;(3)分类讨论判断三角形的形状与两边、的关系,以及与直径的大小的比较,分类讨论即可.【详解】(1)由正弦定理得,所以,由余弦定理得,化简得.,解得;(2)由于为钝角,则,由于,,得证;(3)①当或时,所求不存在;②当且时,,所求有且只有一个,此时;③当时,都是锐角,,存在且只有一个,;④当时,所求存在两个,总是锐角,可以是钝角也可以是锐角,因此所求存在,当时,,,,,;当时,,,,,.【点睛】本题综合考查了三角形形状的判断,考查了解三角形、三角形的外接圆等知识,综合性较强,尤其是第三问需要根据、两边以及直径的大小关系确定三角形的形状,再在这种情况下求第三边的表达式,本解法主观性较强,难度较大.20、(1)见解析;(2).【解析】试题分析:(1)证明线线垂直,一般利用线面垂直性质定理,即利用线面垂直进行证明,而证明线面垂直,则利用线面垂直判定定理,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论