版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省贵阳市清镇北大培文学校2023-2024学年高一数学第二学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数(其中)的图象如图所示,为了得到的图象,只需把的图象上所有的点()A.向右平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向左平移个单位长度2.在中,角A、B、C所对的边分别为a、b、c,且若,则的形状是()A.等腰三角形 B.直角三角形 C.等边三角形 D.等腰直角三角形3.记为等差数列的前n项和.若,,则等差数列的公差为()A.1 B.2 C.4 D.84.《九章算术》是我国古代数学成就的杰出代表作之一,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积(弦矢矢),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为,半径等于6米的弧田,按照上述经验公式计算所得弧田面积约为()A.12平方米 B.16平方米 C.20平方米 D.24平方米5.已知随机变量服从正态分布,且,,则()A.0.2 B.0.3 C.0.7 D.0.86.已知等比数列的前项和为,,,则()A.31 B.15 C.8 D.77.如图,将边长为的正方形沿对角线折成大小等于的二面角分别为的中点,若,则线段长度的取值范围为()A. B.C. D.8.等比数列的前n项和为,若,则等于()A.-3 B.5 C.33 D.-319.如图所示,向量,则()A. B. C. D.10.函数的周期为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,,且,则.12.已知在中,角A,B,C的对边分别为a,b,c,,,的面积等于,则外接圆的面积为______.13.已知P1(x1,y1),P2(x2,y2)是以原点O为圆心的单位圆上的两点,∠P1OP2=θ(θ为钝角).若,则x1x2+y1y2的值为_____.14.设O点在内部,且有,则的面积与的面积的比为.15.函数的单调递增区间为______.16.平面⊥平面,,,,直线,则直线与的位置关系是___.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知平面是正三角形,.(1)求证:平面平面;(2)求二面角的正切值.18.设为等差数列的前项和,已知,.(1)求数列的通项公式;(2)令,且数列的前项和为,求证:.19.已知,其中,,.(1)求的单调递增区间;(2)在中,角,,所对的边分别为,,,,,且向量与共线,求边长和的值.20.如图,甲、乙两个企业的用电负荷量关于投产持续时间(单位:小时)的关系均近似地满足函数.(1)根据图象,求函数的解析式;(2)为使任意时刻两企业用电负荷量之和不超过9,现采用错峰用电的方式,让企业乙比企业甲推迟小时投产,求的最小值.21.已知函数,作如下变换:.(1)分别求出函数的对称中心和单调增区间;(2)写出函数的解析式、值域和最小正周期.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
由图象求得函数解析式的参数,再利用诱导公式将异名函数化为同名函数根据图象间平移方法求解.【详解】由图象可知,又,所以,又因为,所以,所以,又因为,又,所以所以又因为故选D.【点睛】本题考查由图象确定函数的解析式和正弦函数和余弦函数图象之间的平移,关键在于将异名函数化为同名函数,属于中档题.2、C【解析】
直接利用余弦定理的应用求出A的值,进一步利用正弦定理得到:b=c,最后判断出三角形的形状.【详解】在△ABC中,角A、B、C所对的边分别为a、b、c,且b2+c2=a2+bc.则:,由于:0<A<π,故:A.由于:sinBsinC=sin2A,利用正弦定理得:bc=a2,所以:b2+c2﹣2bc=0,故:b=c,所以:△ABC为等边三角形.故选C.【点睛】本题考查了正弦定理和余弦定理及三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.3、B【解析】
利用等差数列的前n项和公式、通项公式列出方程组,能求出等差数列{an}的公差.【详解】∵为等差数列的前n项和,,,∴,解得d=2,a1=5,∴等差数列的公差为2.故选:B.【点睛】本题考查等差数列的公差,此类问题根据题意设公差和首项为d、a1,列出方程组解出即可,属于基础题.4、C【解析】
在中,由题意OA=4,∠DAO=,即可求得OD,AD的值,根据题意可求矢和弦的值,即可利用公式计算求值得解.【详解】如图,由题意可得:∠AOB=,OA=6,在中,可得:∠AOD=,∠DAO=,OD=AO=×6=3,可得:矢=6﹣3=3,由AD=AO=6×=3,可得:弦=2AD=2×3=6,所以:弧田面积=(弦×矢+矢2)=(6×3+32)=9+4.5≈20平方米.故选:C【点睛】本题考查扇形的面积公式,考查数学阅读能力和数学运算能力,属于中档题.5、B【解析】随机变量服从正态分布,所以曲线关于对称,且,由,可知,所以,故选B.6、B【解析】
利用基本元的思想,将已知条件转化为的形式,由此求得,进而求得.【详解】由于数列是等比数列,故,由于,故解得,所以.故选:B.【点睛】本小题主要考查等比数列通项公式的基本量的计算,考查等比数列前项和公式,属于基础题.7、A【解析】
连接和,由二面角的定义得出,由结合为的中点,可知是的角平分线且,由的范围可得出的范围,于是得出的取值范围.【详解】连接,可得,即有为二面角的平面角,且,在等腰中,,且,,则,故答案为,故选A.【点睛】本题考查线段长度的取值范围,考查二面角的定义以及锐角三角函数的定义,解题的关键在于充分研究图形的几何特征,将所求线段与角建立关系,借助三角函数来求解,考查推理能力与计算能力,属于中等题.8、C【解析】
由等比数列的求和公式结合条件求出公比,再利用等比数列求和公式可求出.【详解】设等比数列的公比为(公比显然不为1),则,得,因此,,故选C.【点睛】本题考查等比数列基本量计算,利用等比数列求和公式求出其公比,是解本题的关键,一般在求解等比数列问题时,有如下两种方法:(1)基本量法:利用首项和公比列方程组解出这两个基本量,然后利用等比数列的通项公式或求和公式来进行计算;(2)性质法:利用等比数列下标有关的性质进行转化,能起到简化计算的作用.9、A【解析】
根据平面向量的加法的几何意义、平面向量的基本定理、平面向量数乘运算的性质,结合进行求解即可.【详解】.故选:A【点睛】本题考查了平面向量基本定理及加法运算的几何意义,考查了平面向量数乘运算的性质,属于基础题.10、D【解析】
利用二倍角公式以及辅助角公式将函数化为,再利用三角函数的周期公式即可求解.【详解】,函数的最小正周期为.故选:D【点睛】本题考查了二倍角的余弦公式、辅助角公式以及三角函数的最小正周期的求法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
∵在△ABC中,∠ABC=60°,且AB=5,AC=7,
∴由余弦定理,可得:,
∴整理可得:,解得:BC=8或−3(舍去).考点:1、正弦定理及余弦定理;2、三角形内角和定理及两角和的余弦公式.12、4π【解析】
利用三角形面积公式求解,再利用余弦定理求得,进而得到外接圆半径,再求面积即可.【详解】由,解得..解得.,解得.∴△ABC外接圆的面积为4π.故答案为:4π.【点睛】本题主要考查了解三角形中正余弦与面积公式的运用,属于基础题型.13、-【解析】
先利用平面向量数量积的定义和坐标运算得到,再利用两角和的正弦公式和平方关系进行求解.【详解】根据题意知,又P1,P2在单位圆上,,即x1x2+y1y2=cosθ;∵①又sin2θ+cos2θ=1②且θ为钝角,联立①②求得cosθ=-.【点睛】本题主要考查平面向量的数量积定义和坐标运算、两角和的正弦公式,意在考查学生的逻辑思维能力和基本运算能力,属于中档题.14、3【解析】
分别取AC、BC的中点D、E,
,
,即,
是DE的一个三等分点,
,
故答案为:3.15、【解析】
令,解得的范围即为所求的单调区间.【详解】令,,解得:,的单调递增区间为故答案为:【点睛】本题考查正弦型函数单调区间的求解问题,关键是能够采用整体对应的方式,结合正弦函数的单调区间来进行求解.16、【解析】
利用面面垂直的性质定理得到平面,又直线,利用线面垂直性质定理得.【详解】在长方体中,设平面为平面,平面为平面,直线为直线,由于,,由面面垂直的性质定理可得:平面,因为,由线面垂直的性质定理,可得.【点睛】空间中点、线、面的位置关系问题,一般是利用线面平行或垂直的判定定理或性质定理进行求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】
(1)取的中点的中点,证明,由根据线面垂直判定定理可得,可得平面,结合面面垂直的判定定理,可得平面平面;
(2)过作,连接BM,可以得到为二面角的平面角,解三角形即可求出二面角的正切值.【详解】解:(1)取BE的中点F.
AE的中点G,连接GD,CF∴,GF∥AB又∵,CD∥AB∴CD∥GF,CD=GF,∴CFGD是平行四边形,∴CF∥GD,又∵CF⊥BF,CF⊥AB∴CF⊥平面ABE∵CF∥DG∴DG⊥平面ABE,∵DG⊂平面ABE∴平面ABE⊥平面ADE;(2)∵AB=BE,∴AE⊥BG,∴BG⊥平面ADE,过G作GM⊥DE,连接BM,则BM⊥DE,则∠BMG为二面角A−DE−B的平面角,设AB=BC=2CD=2,则,在Rt△DCE中,CD=1,CE=2,∴,又,由DE⋅GM=DG⋅EG得,所以,故面角的正切值为:.【点睛】本题考查了面面垂直的判定定理及二面角的平面角的作法,重点考查了空间想象能力,属中档题.18、(1),(2)见解析【解析】
(1)根据等差数列的通项公式得到结果;(2)根据第一问得到,由裂项求和得到结果.【详解】(1)设等差数列的公差为,由题意得,,解得,,则,.(2)由得∴.【点睛】这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等。19、(1);(2).【解析】试题分析:(1)化简得,代入,求得增区间为;(2)由求得,余弦定理得.因为向量与共线,所以,由正弦定理得,解得.试题解析:(1)由题意知,,在上单调递增,令,得,的单调递增区间.(2),又,即.,由余弦定理得.因为向量与共线,所以,由正弦定理得.考点:三角函数恒等变形、解三角形.20、(1);(2)4【解析】
(1)由,得,由,得A,b,代入,求得,从而即可得到本题答案;(2)由题,得恒成立,等价于恒成立,然后利用和差公式展开,结合辅助角公式,逐步转化,即可得到本题答案.【详解】(1)解:由图知,又,可得,代入,得,又,所求为(2)设乙投产持续时间为小时,则甲的投产持续时间为小时,由诱导公式,企业乙用电负荷量随持续时间变化的关系式为:同理,企业甲用电负荷量变化关系式为:两企业用电负荷量之和,依题意,有恒成立即恒成立展开有恒成立其中,,,整理得:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教师师徒结对计划
- 《材料成型工艺基础A》教学大纲
- 玉溪师范学院《网球》2023-2024学年第一学期期末试卷
- 施工现场项目部管理制度
- 火山引擎·数据飞轮-行业实践系列自皮书·银行业 -新一代全行级标签体系与标签应用篇 2024
- 2024年细微射频同轴电缆项目评估分析报告
- 2023年有机氟化工产品项目评估分析报告
- 投资学第7版 郎荣燊 思政大纲
- 2019粤教版 高中美术 选择性必修1 绘画《第二单元 练就创造美的巧手》大单元整体教学设计2020课标
- 2024届广西梧州柳州高考数学试题命题比赛模拟试卷
- 【公开课】高三地理一轮复习-自然地理环境的整体性(课件)
- 《高延性混凝土加固技术规程》DB64-T1746-2020
- 四川广安市2024年市级事业单位招考工作人员拟聘用人员公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 《父亲、树林和鸟》公开课一等奖创新教案
- 专业技术职务聘任申请书范文
- DL/T 5352-2018 高压配电装置设计规范
- 稀土发光材料的发光机理及其应用
- 2024江苏地区“三新”供电服务公司招聘600人高频考题难、易错点模拟试题(共500题)附带答案详解
- 初级经济师(初级建筑与房地产经济)题库【重点】
- 化验室安全操作
- MOOC 摄影艺术创作-中国传媒大学 中国大学慕课答案
评论
0/150
提交评论