版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
丹东市重点中学2024届高一下数学期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设变量满足约束条件,则目标函数的最大值为()A.3 B.4 C.18 D.402.已知实数列-1,x,y,z,-2成等比数列,则xyz等于A.-4 B. C. D.3.已知点,,直线的方程为,且与线段相交,则直线的斜率的取值范围为()A. B. C. D.4.某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是()A. B.C. D.5.如图所示,在正方体ABCD—A1B1C1D1中,若E是A1C1的中点,则直线CE垂直于()A.AC B.A1D1 C.A1D D.BD6.已知分别为的三边长,且,则=()A. B. C. D.37.如图,A,B是半径为1的圆周上的定点,P为圆周上的动点,∠APB是锐角,大小为.图中△PAB的面积的最大值为()A.+sin2 B.sin+sin2C.+sin D.+cos8.设是平面内的一组基底,则下面四组向量中,能作为基底的是()A.与 B.与C.与 D.与9.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为弧田面积,弧田(如图所示)由圆弧和其所对的弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为,半径为6米的弧田,按照上述经验公式计算所得弧田面积大约是()()A.16平方米 B.18平方米C.20平方米 D.24平方米10.函数的单调递增区间是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则______(用表示).12.已知圆锥的高为,体积为,用平行于圆锥底面的平面截圆锥,得到的圆台体积是,则该圆台的高为_______.13.已知{}是等差数列,是它的前项和,且,则____.14.函数,的反函数为__________.15.在各项均为正数的等比数列中,,,则___________.16.方程的解集是____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆:,点是直线:上的一动点,过点作圆M的切线、,切点为、.(Ⅰ)当切线PA的长度为时,求点的坐标;(Ⅱ)若的外接圆为圆,试问:当运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;(Ⅲ)求线段长度的最小值.18.如图,求阴影部分绕旋转一周所形成的几何体的表面积和体积.19.已知数列为等差数列,,,数列为等比数列,,公比.(1)求数列、的通项公式;(2)求数列的前n项和.20.已知函数.(1)求函数在区间上的最大值;(2)在中,若,且,求的值.21.如图,在四棱锥中,平面,底面是棱长为的菱形,,,是的中点.(1)求证://平面;(2)求直线与平面所成角的正切值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】不等式所表示的平面区域如下图所示,当所表示直线经过点时,有最大值考点:线性规划.2、C【解析】.3、A【解析】
直线过定点,利用直线的斜率公式分别计算出直线,和的斜率,根据斜率的单调性即可求斜率的取值范围.【详解】解:直线整理为即可知道直线过定点,作出直线和点对应的图象如图:,,,,,要使直线与线段相交,则直线的斜率满足或,或即直线的斜率的取值范围是,故选.【点睛】本题考查直线斜率的求法,利用数形结合确定直线斜率的取值范围,属于基础题.4、A【解析】由于频率分布直方图的组距为5,去掉C、D,又[0,5),[5,10)两组各一人,去掉B,应选A.5、D【解析】
在正方体内结合线面关系证明线面垂直,继而得到线线垂直【详解】,平面,平面,则平面又因为平面则故选D【点睛】本题考查了线线垂直,在求解过程中先求得线面垂直,由线面垂直的性质可得线线垂直,从而得到结果6、B【解析】
由已知直接利用正弦定理求解.【详解】在中,由A=45°,C=60°,c=3,由正弦定理得.故选B.【点睛】本题考查三角形的解法,考查正弦定理的应用,属于基础题.7、B【解析】
由正弦定理可得,,则,,当点在的中垂线上时,取得最大值,此时的面积最大,求解即可.【详解】在中,由正弦定理可得,,则.,当点在的中垂线上时,取得最大值,此时的面积最大.取的中点,过点作的垂线,交圆于点,取圆心为,则(为锐角),.所以的面积最大为.故选B.【点睛】本题考查了三角形的面积的计算、正弦定理的应用,考查了三角函数的化简,考查了计算能力,属于基础题.8、C【解析】
利用向量可以作为基底的条件是,两个向量不共线,由此分别判定选项中的两个向量是否共线即可.【详解】由是平面内的一组基底,所以和不共线,对应选项A:,所以这2个向量共线,不能作为基底;对应选项B:,所以这2个向量共线,不能作为基底;对应选项D:,所以这2个向量共线,不能作为基底;对应选项C:与不共线,能作为基底.故选:C.【点睛】本题主要考查基底的定义,判断2个向量是否共线的方法,属于基础题.9、C【解析】分析:根据已知数据分别计算弦和矢的长度,再按照弧田面积经验公式计算,即可得到答案.详解:由题可知,半径,圆心角,弦长:,弦心距:,所以矢长为.按照弧田面积经验公式得,面积故选C.点睛:本题考查弓形面积以及古典数学的应用问题,考查学生对题意的理解和计算能力.10、A【解析】
先求出所有的单调递增区间,然后与取交集即可.【详解】因为令得:所以的单调递增区间是因为,所以即函数的单调递增区间是故选:A【点睛】求形如的单调区间时,一般利用复合函数的单调性原理“同增异减”来求出此函数的单调区间,当时,需要用诱导公式将函数转化为.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
直接利用诱导公式化简求解即可.【详解】解:,则,故答案为:.【点睛】本题考查诱导公式的应用,三角函数化简求值,考查计算能力,属于基础题.12、【解析】设该圆台的高为,由题意,得用平行于圆锥底面的平面截圆锥,得到的小圆锥体积是,则,解得,即该圆台的高为3.点睛:本题考查圆锥的结构特征;在处理圆锥的结构特征时可记住常见结论,如本题中用平行于圆锥底面的平面截圆锥,截面与底面的面积之比是两个圆锥高的比值的平方,所得两个圆锥的体积之比是两个圆锥高的比值的立方.13、【解析】
根据等差数列的性质得,由此得解.【详解】解:由题意可知,;同理。故.故答案为:【点睛】本题考查了等差数列的性质,属于基础题.14、【解析】
将函数变形为的形式,然后得到反函数,注意定义域.【详解】因为,所以,则反函数为:且.【点睛】本题考查反三角函数的知识,难度较易.给定定义域的时候,要注意函数定义域.15、8【解析】
根据题中数列,结合等比数列的性质,得到,即可得出结果.【详解】因为数列为各项均为正数的等比数列,,,所以.故答案为【点睛】本题主要考查等比数列的性质的应用,熟记等比数列的性质即可,属于基础题型.16、【解析】
由方程可得或,然后分别解出规定范围内的解即可.【详解】因为所以或由得或因为,所以由得因为,所以综上:解集是故答案为:【点睛】方程的等价转化为或,不要把遗漏了.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ);(Ⅲ)AB有最小值【解析】
试题分析:(Ⅰ)求点的坐标,需列出两个独立条件,根据解方程组解:由点是直线:上的一动点,得,由切线PA的长度为得,解得(Ⅱ)设P(2b,b),先确定圆的方程:因为∠MAP=90°,所以经过A、P、M三点的圆以MP为直径,其方程为:,再按b整理:由解得或,所以圆过定点(Ⅲ)先确定直线方程,这可利用两圆公共弦性质解得:由圆方程为及圆:,相减消去x,y平方项得圆方程与圆相交弦AB所在直线方程为:,相交弦长即:,当时,AB有最小值试题解析:(Ⅰ)由题可知,圆M的半径r=2,设P(2b,b),因为PA是圆M的一条切线,所以∠MAP=90°,所以MP=,解得所以4分(Ⅱ)设P(2b,b),因为∠MAP=90°,所以经过A、P、M三点的圆以MP为直径,其方程为:即由,7分解得或,所以圆过定点9分(Ⅲ)因为圆方程为即①圆:,即②②-①得圆方程与圆相交弦AB所在直线方程为:11分点M到直线AB的距离13分相交弦长即:当时,AB有最小值16分考点:圆的切线长,圆的方程,两圆的公共弦方程18、,【解析】
由图形知旋转后的几何体是一个圆台,从上面挖去一个半球后剩余部分,根据图形中的数据可求出其表面积和体积.【详解】由题意知,所求旋转体的表面积由三部分组成:圆台下底面、侧面和一个半球面,而半球面的表面积,圆台的底面积,圆台的侧面积,所以所求几何体的表面积;圆台的体积,半球的体积,所以,旋转体的体积为,故得解.【点睛】本题考查组合体的表面积、体积,还考查了空间想象能力,能想象出旋转后的旋转体的构成是本题的关键,属于中档题.19、(1),.(2)【解析】
(1)先求出等差数列的首项和公差,求出等比数列的首项即得数列、的通项公式;(2)利用分组求和求数列的前n项和.【详解】(1)由题得.由题得.(2)由题得,所以数列的前n项和.【点睛】本题主要考查等差等比数列的通项的基本量的计算,考查数列通项的求法和求和,意在考查学生对这些知识的理解掌握水平.20、(1);(2).【解析】
(1)先将函数化简整理,得到,根据,得到,根据正弦函数的性质,即可得出结果;(2)令,得到或,根据,,得出,,求出,根据正定理,即可得出结果.【详解】(1)因为,所以,因此;故函数在区间上的最大值;(2)因为,由(1),令,所以或,解得:或,因为,所以,,因此,由正弦定理可得:.【点睛】本题主要考查求正弦型复合函数在给定区间的最值,以及正弦定理的应用,熟记正弦函数的性质,以及正弦定理即可,属于常考题型.21、(1)见解析(2)【解析】
(1)连接交于点,则为的中点,由中位线的性质得出,再利用直线与平面平行的判定定理得出平面;(2)取的中点,连接,由中位线的性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国寿福禄双喜亮点卖点分析及成功销售四部曲
- 危险吊装安全经验分享
- 齿轮科技:过去与未来-探究工业机械齿轮的历史与前景
- 室内设计入门教程
- 甘肃省兰州市2020年中考语文真题试卷(含答案)
- 二年级上册心理健康教育教案
- 七彩管弦(三)-.a小调钢琴三重奏 课件 2024-2025学年湘教版初中音乐八年级上册
- 高压氧舱事故应急救援预案
- 2014-2019年中国松花粉市场调研及投资发展趋势预测报告
- 2010年中国催化剂行业市场研究及竞争力分析报告
- 新苏教版(新教材)三年级上册小学科学 第14课 海洋课件
- 幼儿教育政策法规解读-高职-学前教育专业课件
- 伤口拍照要求及换药技术-课件
- 公开课听课记录表格
- Unit 3 Developing ideas Just A Brother课件-高中英语外研版必修第一册
- 标准检验指导书(SIP)-(格式模板)
- 产品更改申请通知单
- 2023-2023年全国初中数学竞赛试题含答案
- 共用水电费分割单模板
- 《采用合理的论证方法》课件-统编版高中语文选择性必修上册
- 满意度调查表(模板)
评论
0/150
提交评论