浙江省嵊州市崇仁中学2024年高一数学第二学期期末检测试题含解析_第1页
浙江省嵊州市崇仁中学2024年高一数学第二学期期末检测试题含解析_第2页
浙江省嵊州市崇仁中学2024年高一数学第二学期期末检测试题含解析_第3页
浙江省嵊州市崇仁中学2024年高一数学第二学期期末检测试题含解析_第4页
浙江省嵊州市崇仁中学2024年高一数学第二学期期末检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省嵊州市崇仁中学2024年高一数学第二学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图是一名篮球运动员在最近6场比赛中所得分数的茎叶图,则下列关于该运动员所得分数的说法错误的是()A.中位数为14 B.众数为13 C.平均数为15 D.方差为192.化简sin2013o的结果是A.sin33o B.cos33o C.-sin33o D.-cos33o3.一个几何体的三视图如图所示,则这个几何的体积为()立方单位.A. B.C. D.4.若,且,则下列不等式一定成立的是()A. B.C. D.5.集合A={x|-2<x<2},B={x|-1<x<3}那么A∪B=()A.{x|-2<x<-1} B.{x|-1<x<2}C.{x|-2<x<1} D.{x|-2<x<3}6.在数列中,已知,,则该数列前2019项的和()A.2019 B.2020 C.4038 D.40407.已知向量,若,则的最小值为().A.12 B. C.16 D.8.为比较甲、乙两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定.其中所有正确结论的编号为:()A.①③ B.①④ C.②③ D.②④9.已知平面向量的夹角为,且,则()A. B. C. D.10.在ΔABC中,内角A,B,C所对的边分别为a,b,c,若c=2bsinC,B≤πA.π6 B.π4 C.π二、填空题:本大题共6小题,每小题5分,共30分。11.已知(),则________.(用表示)12.若数列的前4项分别是,则它的一个通项公式是______.13.直线与间的距离为________.14.数列满足,当时,,则是否存在不小于2的正整数,使成立?若存在,则在横线处直接填写的值;若不存在,就填写“不存在”_______.15.在中,角的对边分别为,若,则_______.(仅用边表示)16.若数列的前项和为,则该数列的通项公式为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某同学利用暑假时间到一家商场勤工俭学,该商场向他提供了三种付款方式:第一种,每天支付38圆;第二种,第一天付4元,第二天付8元,第三天付12元,以此类推:第三种,第一天付0.4元,以后每天比前一天翻一番(即增加一倍),你会选择哪种方式领取报酬呢?18.如图1,在中,,,,分别是,,中点,,.现将沿折起,如图2所示,使二面角为,是的中点.(1)求证:面面;(2)求直线与平面所成的角的正弦值.19.习主席说:“绿水青山就是金山银山”.某地相应号召,投入资金进行生态环境建设,并以此发展旅游产业,根据规划,2018年投入1000万元,以后每年投入将比上一年减少,本年度当地旅游业收入估计为500万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上一年增加.(1)设年内(2018年为第一年)总投入为万元,旅游业总收入为万元,写出、的表达式;(2)至少到哪一年,旅游业的总收入才能超过总投入.(参考数据:,,)20.已知.(1)若三点共线,求实数的值;(2)证明:对任意实数,恒有成立.21.如图,在三棱锥中,,分别为棱,上的三等份点,,.(1)求证:平面;(2)若,平面,求证:平面平面.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】从题设中所提供的茎叶图可知六个数分别是,所以其中位数是,众数是,平均数,方差是,应选答案D.2、C【解析】试题分析:sin2013o=.考点:诱导公式.点评:直接考查诱导公式,我们要熟记公式.属于基础题型.3、D【解析】由三视图可知几何体是由一个四棱锥和半个圆柱组合而成的,所以所求的体积为,故选D.4、B【解析】

根据不等式性质确定选项.【详解】当时,不成立;因为,所以;当时,不成立;当时,不成立;所以选B.【点睛】本题考查不等式性质,考查基本分析判断能力,属基础题.5、D【解析】

根据并集定义计算.【详解】由题意A∪B={x|-2<x<3}.故选D.【点睛】本题考查集合的并集运算,属于基础题.6、A【解析】

根据条件判断出为等差数列,利用等差数列的性质得到和之间的关系,得到答案.【详解】为等差数列【点睛】本题考查等差中项,等差数列的基本性质,属于简单题.7、B【解析】

根据向量的平行关系,得到间的等量关系,再根据“”的妙用结合基本不等式即可求解出的最小值.【详解】因为,所以,所以,又因为,取等号时即,所以.故选:B.【点睛】本题考查利用基本不等式求解最小值,难度一般.本题是基本不等式中的常见类型问题:已知,则,取等号时.8、C【解析】

根据中位数,平均数,方差的概念计算比较可得.【详解】甲的中位数为29,乙的中位数为30,故①不正确;甲的平均数为29,乙的平均数为30,故②正确;从比分来看,乙的高分集中度比甲的高分集中度高,故③正确,④不正确.故选C.【点睛】本题考查了茎叶图,属基础题.平均数即为几个数加到一起除以数据的个数得到的结果.9、B【解析】

将模平方后利用数量积的定义计算其结果,然后开根号得出的值.【详解】,因此,,故选B.【点睛】本题考查利用平面向量的数量积来求平面向量的模,通常利用平方法结合平面向量数量积的定义来进行求解,考查计算能力,属于中等题.10、A【解析】

利用正弦定理可求得sinB=12【详解】因为c=2bsinC,所以sinC=2sinBsinC,所以sinB=1【点睛】本题主要考查正弦定理的运用,难度较小.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据同角三角函数之间的关系,结合角所在的象限,即可求解.【详解】因为,所以,故,解得,又,,所以.故填.【点睛】本题主要考查了同角三角函数之间的关系,三角函数在各象限的符号,属于中档题.12、【解析】

根据等比数列的定义即可判断出该数列是以为首项,为公比的等比数列,根据等比数列的通项公式即可写出该数列的一个通项公式.【详解】解:∵,该数列是以为首项,为公比的等比数列,该数列的通项公式是:,故答案为:.【点睛】本题主要考查等比数列的定义以及等比数列的通项公式,属于基础题.13、【解析】

根据两平行线间的距离,,代入相应的数据,整理计算得到答案.【详解】因为直线与互相平行,所以根据平行线间的距离公式,可以得到它们之间的距离,.【点睛】本题考查两平行线间的距离公式,属于简单题.14、70【解析】

构造数列,两式与相减可得数列{}为等差数列,求出,让=0即可求出.【详解】设两式相减得又数列从第5项开始为等差数列,由已知易得均不为0所以当n=70的时候成立,故答案填70.【点睛】如果递推式中出现和的形式,比如,可以尝试退项相减,即让取后,两式作差,和的部分因为相减而抵消,剩下的就好算了。15、【解析】

直接利用正弦定理和三角函数关系式的变换的应用求出结果.【详解】由正弦定理,结合可得,即,即,从而.【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦定理余弦定理和三角形面积的应用,主要考察学生的运算能力和转换能力,属于基础题型.16、【解析】

由,可得出,再令,可计算出,然后检验是否满足在时的表达式,由此可得出数列的通项公式.【详解】由题意可知,当时,;当时,.又不满足.因此,.故答案为:.【点睛】本题考查利用求,一般利用来计算,但要对是否满足进行检验,考查运算求解能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、见解析【解析】

,,.下面考察,,的大小.可以看出时,.因此,当工作时间小于10天时,选用第一种付费方式,时,,,因此,选用第三种付费方式.18、(1)见解析(2)【解析】

(1)证明面得到面面.(2)先判断为直线与平面所成的角,再计算其正弦值.【详解】(1)证明:法一:由已知得:且,,∴面.∵,∴面.∵面,∴,又∵,∴,∵,,∴面.面,∴.又∵且是中点,∴,∴,∴面.∵面,∴面面.法二:同法一得面.又∵,面,面,∴面.同理面,,面,面.∴面面.∴面,面,∴.又∵且是中点,∴,∴,∴面.∵面,∴面面.(2)由(1)知面,∴为直线在平面上的射影.∴为直线与平面所成的角,∵且,∴二面角的平面角是.∵,∴,∴.又∵面,∴.在中,.在中,.∴在中,.【点睛】本题考查了面面垂直,线面夹角,意在考查学生的空间想象能力和计算能力.19、(1),;(2)2022年【解析】

(1)根据题意,知每年投入资金和旅游业收入是等比数列,根据等比数列的前n项和公式,即可求解;(2)根据(1)中解析式,列出不等式,令,化简不等式,即可求解.【详解】解:(1)2018年投入为1000万元,第年投入为万元,所以,年内的总投入为.2018年旅游业收入为500万元,第年旅游业收入为万元,所以,年内的旅游业总收入为.(2)设至少经讨年,旅游业的总收入才能超讨总投入,由此得,即,令,代入上式得,解得或(舍去),即,不等式两边取常用对数,,即.∴∴至少到2022年,旅游业的总收入才能超过总投入.【点睛】本题考查等比数列求和公式,转化法解指数不等式,考查数学建模思想方法,考查计算能力,属于中等题型.20、(1)-3;(2)证明见解析.【解析】分析:(1)由题意可得,结合三点共线的充分必要条件可得.(2)由题意结合平面向量数量积的坐标运算法则可得,则恒有成立.详解:(1),∵三点共线,∴,∴.(2),∴,∴恒有成立.点睛:本题主要考查平面向量数量

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论