版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年陕西省西安市618中学高一数学第二学期期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的部分图象如图,则()()A.0 B. C. D.62.在中,,.若点满足,则()A. B. C. D.3.已知随机变量服从正态分布,且,,则()A.0.2 B.0.3 C.0.7 D.0.84.在中,角,,的对边分别为,,,若,,则()A. B. C. D.5.已知是第二象限角,且,则的值为A. B. C. D.6.某市电视台为调查节目收视率,想从全市3个县按人口数用分层抽样的方法抽取一个容量为的样本,已知3个县人口数之比为,如果人口最多的一个县抽出60人,那么这个样本的容量等于()A.96 B.120 C.180 D.2407.为了得到函数的图象,只需把函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度8.在各项均为正数的等比数列中,公比.若,,,数列的前n项和为,则当取最大值时,n的值为()A.8 B.9 C.8或9 D.179.以点和为直径两端点的圆的方程是()A. B.C. D.10.已知,,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在中,,是边上一点,,则.12.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.13.直线过点且倾斜角为,直线过点且与垂直,则与的交点坐标为____14.已知向量,则与的夹角是_________.15.一船自西向东匀速航行,上午10时到达一座灯塔的南偏西距塔64海里的处,下午2时到达这座灯塔的东南方向的处,则这只船的航行速度为__________海里/小时.16.如图,为了测量树木的高度,在处测得树顶的仰角为,在处测得树顶的仰角为,若米,则树高为______米.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知平面向量(1)若,求;(2)若,求与夹角的余弦值.18.在平面直角坐标系中,点,点P在x轴上(1)若,求点P的坐标:(2)若的面积为10,求点P的坐标.19.某城市的华为手机专卖店对该市市民使用华为手机的情况进行调查.在使用华为手机的用户中,随机抽取100名,按年龄(单位:岁)进行统计的频率分布直方图如图:(1)根据频率分布直方图,分别求出样本的平均数(同一组数据用该区间的中点值作代表)和中位数的估计值(均精确到个位);(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加华为手机宣传活动,再从这20人中年龄在和的人群里,随机选取2人各赠送一部华为手机,求这2名市民年龄都在内的概率.20.在△ABC中,a,b,c分别是角A,B,C的对边,已知3(b2+c2)=3a2+2bc.(1)若sinB=cosC,求tanC的大小;(2)若a=2,△ABC的面积S=,且b>c,求b,c.21.已知直线的方程为,其中.(1)求证:直线恒过定点;(2)当变化时,求点到直线的距离的最大值;(3)若直线分别与轴、轴的负半轴交于两点,求面积的最小值及此时直线的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
先利用正切函数求出A,B两点的坐标,进而求出与的坐标,再代入平面向量数量积的运算公式即可求解.【详解】因为y=tan(x)=0⇒xkπ⇒x=4k+2,由图得x=2;故A(2,0)由y=tan(x)=1⇒xk⇒x=4k+3,由图得x=3,故B(3,1)所以(5,1),(1,1).∴()5×1+1×1=1.故选D.【点睛】本题主要考查平面向量数量积的坐标运算,考查了利用正切函数值求角的运算,解决本题的关键在于求出A,B两点的坐标,属于基础题.2、A【解析】
试题分析:,故选A.3、B【解析】随机变量服从正态分布,所以曲线关于对称,且,由,可知,所以,故选B.4、A【解析】
由正弦定理求得sinA,利用同角三角函数的基本关系求得cosA,求出sinB=sin(120°+A)的值,可得
的值.【详解】△ABC中,由正弦定理可得
,∴
,∴sinA=
,cosA=.
sinB=sin(120°+A)=
•+•=
,再由正弦定理可得
=
=
,
故答案为
A.【点睛】本题考查正弦定理,两角和与差的正弦公式的应用,求出sinB是解题的关键,属基础题.5、B【解析】试题分析:因为是第二象限角,且,所以.考点:两角和的正切公式.6、B【解析】
根据分层抽样的性质,直接列式求解即可.【详解】因为3个县人口数之比为,而人口最多的一个县抽出60人,则根据分层抽样的性质,有,故选:B.【点睛】本题考查分层抽样,解题关键是明确分层抽样是按比例进行抽样.7、A【解析】
根据,因此只需把函数的图象向左平移个单位长度.【详解】因为,所以只需把函数的图象向左平移个单位长度即可得,选A.【点睛】本题主要考查就三角函数的变换,左加右减只针对,属于基础题.8、C【解析】∵为等比数列,公比为,且∴∴,则∴∴∴,∴数列是以4为首项,公差为的等差数列∴数列的前项和为令当时,∴当或9时,取最大值.故选C点睛:(1)在解决等差数列、等比数列的运算问题时,有两个处理思路:一是利用基本量将多元问题简化为一元问题;二是利用等差数列、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差数列、等比数列问题的快捷方便的工具;(2)求等差数列的前项和最值的两种方法:①函数法:利用等差数列前项和的函数表达式,通过配方或借助图象求二次函数最值的方法求解;②邻项变号法:当时,满足的项数使得取得最大值为;当时,满足的项数使得取得最小值为.9、A【解析】
可根据已知点直接求圆心和半径.【详解】点和的中点是圆心,圆心坐标是,点和间的距离是直径,,即,圆的方程是.故选A.【点睛】本题考查了圆的标准方程的求法,属于基础题型.10、C【解析】
利用指数函数、对数函数的单调性即可求解.【详解】为减函数,,为增函数,,为增函数,,所以,故.故选:C【点睛】本题考查了指数函数、对数函数的单调性比较指数式、对数式的大小,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由图及题意得
,
=
∴
=(
)(
)=
+
=
=
.12、1.98.【解析】
本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【详解】由题意得,经停该高铁站的列车正点数约为,其中高铁个数为11+21+11=41,所以该站所有高铁平均正点率约为.【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.13、【解析】
通过题意,求出两直线方程,联立方程即可得到交点坐标.【详解】根据题意可知,因此直线为:,由于直线与垂直,故,所以,所以直线为:,联立两直线方程,可得交点.【点睛】本题主要考查直线方程的相关计算,难度不大.14、【解析】
利用向量的数量积直接求出向量的夹角即可.【详解】由题知,,因为,所以与的夹角为.故答案为:.【点睛】本题考查了利用向量的数量积求解向量的夹角,属于基础题.15、【解析】由,行驶了4小时,这只船的航行速度为海里/小时.【点睛】本题为解直角三角形应用题,利用直角三角形边角关系表示出两点间的距离,在用辅助角公式变形求值,最后利用速度公式求出结果.16、【解析】
先计算,再计算【详解】在处测得树顶的仰角为,在处测得树顶的仰角为则在中,故答案为【点睛】本题考查了三角函数的应用,也可以用正余弦定理解答.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)由题可得,解出,,进而得出答案.(2)由题可得,,再由计算得出答案,【详解】因为,所以,即解得所以(2)若,则所以,,,所以【点睛】本题主要考查的向量的模以及数量积,属于简单题.18、(1);(2)或【解析】
(1)利用两直线垂直,斜率之积为-1进行求解(2)将三角形的面积问题转化成点到直线的距离公式进行求解【详解】(1)设P点坐标为,由题意,直线AB的斜率;因为,所以直线PB存在斜率且,即,解得;故点P的坐标为;(2)设P点坐标为,P到直线AB的距离为d;由已知,直线AB的方程为;的面积.得,即,解得或;所以点P的坐标为或【点睛】两直线垂直的斜率关系为;已知两点坐标时,距离公式为;三角形面积问题,常可转化为点到直线距离公式进行求解.19、(1)见解析(2)【解析】分析:(1)直接利用频率分布直方图的平均值和中位数公式求解.(2)利用古典概型求这2名市民年龄都在内的概率.详解:(Ⅰ)平均值的估计值:中位数的估计值:因为,所以中位数位于区间年龄段中,设中位数为,所以,.(Ⅱ)用分层抽样的方法,抽取的20人,应有4人位于年龄段内,记为,2人位于年龄段内,记为.现从这6人中随机抽取2人,设基本事件空间为,则设2名市民年龄都在为事件A,则,所以.点睛:(1)本题主要考查频率分布直方图,考查平均值和中位数的计算和古典概型,意在考查学生对这些基础知识的掌握能力和基本的运算能力.(2)先计算出每个小矩形的面积,通过解方程找到左边面积为0.5的点P,点P对应的数就是中位数.一般利用平均数的公式计算.其中代表第个矩形的横边的中点对应的数,代表第个矩形的面积.20、(1);(2).【解析】试题分析:(1)根据已知条件及余弦定理可求得的值,再由同角三角函数基本关系式可求得的值.因为,所以,由两角和的正弦公式可将其化简变形,可求得与的关系式,从而可得.(2)根据余弦定理和三角形面积均可得的关系式.从而可解得的值.试题解析:,,,.(1),,,,.(2),,,①,∴由余弦定理可得,,②,∴联立①②可得.考点:1正弦定理;2余弦定理;3两角和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 股权变动之后的担保的合同(2篇)
- 酸乳加工课件教学课件
- 南京航空航天大学《程序设计》2021-2022学年期末试卷
- 南京工业大学浦江学院《思想道德修养与法律基础》2022-2023学年期末试卷
- 放射性元素的衰变说课稿
- 天平湖工程施工组织设计方案
- 南京工业大学浦江学院《秘书实务》2022-2023学年第一学期期末试卷
- 南京工业大学浦江学院《基础工业工程》2022-2023学年第一学期期末试卷
- 南京工业大学浦江学院《公益传播》2022-2023学年第一学期期末试卷
- 简易仓储租赁合同(2篇)
- 中国古代文学史(全套)课件
- KTV对讲机的使用及规范用语
- 小学数学西南师大二年级上册六表内除法 分一分- PPT
- GB/T 28879-2022电工仪器仪表产品型号编制方法
- GA 1800.1-2021电力系统治安反恐防范要求第1部分:电网企业
- 企业如何利用新媒体做好宣传工作课件
- 如何培养孩子的自信心课件
- 中医药膳学全套课件
- 颈脊髓损伤-汇总课件
- 齿轮故障诊断完美课课件
- 2023年中国盐业集团有限公司校园招聘笔试题库及答案解析
评论
0/150
提交评论