重庆市第七十一中学2023-2024学年数学高一下期末教学质量检测模拟试题含解析_第1页
重庆市第七十一中学2023-2024学年数学高一下期末教学质量检测模拟试题含解析_第2页
重庆市第七十一中学2023-2024学年数学高一下期末教学质量检测模拟试题含解析_第3页
重庆市第七十一中学2023-2024学年数学高一下期末教学质量检测模拟试题含解析_第4页
重庆市第七十一中学2023-2024学年数学高一下期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市第七十一中学2023-2024学年数学高一下期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点,则P在平面直角坐标系中位于A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知基本单位向量,,则的值为()A.1 B.5 C.7 D.253.函数的图象如图所示,为了得到的图象,可将的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位4.数列为等比数列,若,,数列的前项和为,则A. B. C.7 D.315.设等比数列{an}的前n项和为Sn,若S6A.73 B.2 C.86.已知两条直线m,n,两个平面α,β,下列命题正确是()A.m∥n,m∥α⇒n∥α B.α∥β,m⊂α,n⊂β⇒m∥nC.α⊥β,m⊂α,n⊂β⇒m⊥n D.α∥β,m∥n,m⊥α⇒n⊥β7.已知向量,向量,则()A. B. C. D.8.等差数列中,若,则=()A.11 B.7 C.3 D.29.已知函数(,,)的部分图象如图所示,则()A. B. C. D.10.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18km,速度为1000km/h,飞行员先看到山顶的俯角为30°,经过1min后又看到山顶的俯角为75°,则山顶的海拔高度为(精确到0.1km)()A.11.4 B.6.6C.6.5 D.5.6二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,向量,若与垂直,则__________.12.已知数列的通项公式为,的前项和为,则___________.13.如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,则x的值为_________.14.过点作圆的切线,则切线的方程为_____.15.在正数数列an中,a1=1,且点an,an-116.已知数列的前n项和为,,且(),记(),若对恒成立,则的最小值为__.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,函数(其中),且图象在轴右侧的第一个最高点的横坐标为,并过点.(1)求函数的解析式;(2)求函数的单调增区间.18.已知是同一平面内的三个向量,;(1)若,且,求的坐标;(2)若,且与垂直,求与的夹角.19.设平面三点、、.(1)试求向量的模;(2)若向量与的夹角为,求;(3)求向量在上的投影.20.的内角的对边分别为.(1)求证:;(2)在边上取一点P,若.求证:.21.已知角终边上一点,且,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

利用特殊角的三角函数值的符号得到点的坐标,直接判断点所在象限即可.【详解】,.在平面直角坐标系中位于第二象限.故选B.【点睛】本题考查了三角函数值的符号,考查了三角函数的诱导公式的应用,是基础题.2、B【解析】

计算出向量的坐标,再利用向量的求模公式计算出的值.【详解】由题意可得,因此,,故选B.【点睛】本题考查向量模的计算,解题的关键就是求出向量的坐标,并利用坐标求出向量的模,考查运算求解能力,属于基础题.3、A【解析】

函数过代入解得,再通过平移得到的图像.【详解】,函数过向右平移个单位得到的图象故答案选A【点睛】本题考查了三角函数图形,求函数表达式,函数平移,意在考查学生对于三角函数图形的理解.4、A【解析】

先求等比数列通项公式,再根据等比数列求和公式求结果.【详解】数列为等比数列,,,,解得,,数列的前项和为,.故选.【点睛】本题考查等比数列通项公式与求和公式,考查基本分析求解能力,属基础题.5、A【解析】解:因为等比数列{an}的前n项和为Sn,则Sn,S2n-Sn,S3n-S2n成等比,(Sn≠0)所以S66、D【解析】

在A中,n∥α或n⊂α;在B中,m与n平行或异面;在C中,m与n相交、平行或异面;在D中,由线面垂直的判定定理得:α∥β,m∥n,m⊥α⇒n⊥β.【详解】由两条直线m,n,两个平面α,β,知:在A中,m∥n,m∥α⇒n∥α或n⊂α,故A错误;在B中,α∥β,m⊂α,n⊂β⇒m与n平行或异面,故B错误;在C中,α⊥β,m⊂α,n⊂β⇒m与n相交、平行或异面,故C错误;在D中,由线面垂直的判定定理得:α∥β,m∥n,m⊥α⇒n⊥β,故D正确.故选:D.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.7、C【解析】

设,根据系数对应关系即可求解【详解】设,即,故选:C【点睛】本题考查向量共线的基本运算,属于基础题8、A【解析】

根据和已知条件即可得到.【详解】等差数列中,故选A.【点睛】本题考查了等差数列的基本性质,属于基础题.9、D【解析】试题分析:由图可知,,∴,又,∴,∴,又.∴.考点:由图象确定函数解析式.10、B【解析】AB=1000×(km),∴BC=·sin30°=(km).∴航线离山顶h=×sin75°≈11.4(km).∴山高为18-11.4=6.6(km).选B.二、填空题:本大题共6小题,每小题5分,共30分。11、;【解析】

由计算可得.【详解】,∵与垂直,∴,.故答案为-1.【点睛】本题考查向量垂直的坐标运算.由向量垂直得其数量积为0,本题属于基础题.12、【解析】

计算出,再由可得出的值.【详解】当时,则,当时,则,当时,.,,因此,.故答案为:.【点睛】本题考查数列求和,解题的关键就是找出数列的规律,考查分析问题和解决问题的能力,属于中等题.13、【解析】

根据茎叶图中数据和中位数的定义可构造方程求得.【详解】甲组数据的中位数为,解得:故答案为:【点睛】本题考查茎叶图中中位数相关问题的求解,属于基础题.14、或【解析】

求出圆的圆心与半径分别为:,,分别设出直线斜率存在与不存在情况下的直线方程,利用点到直线的距离等于半径即可得到答案.【详解】由圆的一般方程得到圆的圆心和半径分别为;,;(1)当过点的切线斜率不存在时,切线方程为:,此时圆心到直线的距离,故不与圆相切,不满足题意;(2)当过点的切线的斜率存在时,设切线方程为:,即为;由于直线与圆相切,所以圆心到切线的距离等于半径,即,解得:或,所以切线的方程为或;综述所述:切线的方程或【点睛】本题考查过圆外一点求圆的切线方程,解题关键是设出切线方程,利用圆心到切线的距离等于半径得到关系式,属于中档题.15、2【解析】

在正数数列an中,由点an,an-1在直线x-2y=0上,知a【详解】由题意,在正数数列an中,a1=1,且a可得an-2即an因为a1=1,所以数列所以Sn故答案为2n【点睛】本题主要考查了等比数列的定义,以及等比数列的前n项和公式的应用,同时涉及到数列与解析几何的综合运用,是一道好题.解题时要认真审题,仔细解答,注意等比数列的前n项和公式和通项公式的灵活运用,着重考查了推理与运算能力,属于中档试题.16、【解析】

,即为首项为,公差为的等差数列,,,,由得,因为或时,有最大值,,即的最小值为,故答案为.【方法点晴】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,掌握一些常见的裂项技巧:①;②;③;④;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)根据向量的数量积得,结合,即可求解;(2)令即可求得增区间.【详解】(1)由题图象在轴右侧的第一个最高点的横坐标为,并过点所以,解得,,解得:,所以;(2)令函数的单调增区间为.【点睛】此题考查根据平面向量的数量积,求函数解析式,根据三角函数的顶点坐标和曲线上的点的坐标求参数,利用整体代入法求单调区间.18、(1)或;(2).【解析】

(1)设向量,根据和得到关于的方程组,从而得到答案;(2)根据与垂直,得到的值,根据向量夹角公式得到的值,从而得到的值.【详解】(1)设向量,因为,,,所以,解得,或所以或;(2)因为与垂直,所以,所以而,,所以,得,与的夹角为,所以,因为,所以.【点睛】本题考查根据向量的平行求向量的坐标,根据向量的垂直关系求向量的夹角,属于简单题.19、(1);(2);(3).【解析】

(1)计算出、的坐标,可计算出的坐标,再利用平面向量模长的坐标表示可计算出向量的模;(2)由可计算出的值;(3)由投影的定义得出向量在上的投影为可计算出结果.【详解】(1)、、,,,因此,;(2)由(1)知,,,所以;(3)由(2)知向量与的夹角的余弦为,且.所以向量在上的投影为.【点睛】本题考查平面向量的坐标运算以及平面向量夹角的坐标表示、以及向量投影的计算,解题时要熟悉平面向量坐标的运算律以及平面向量数量积、模、夹角的坐标运算,考查计算能力,属于基础题.20、(1)详见解析;(2)详见解析.【解析】

(1)余弦定理的证明其实在课本就直接给出过它向量方法的证明,通过,等向量模长相等就可,当然我们还可以通过坐标的运算完成(如方法二)(2)通过点P,将三角形分割,这种题中多注意几个相等(公共边相等,)我们可以得到相对应的等量关系,完成本题.【详解】(1)证法一:如图,即证法二:已知中所对边分别为,以为原点,所在直线为轴建立直角坐标系,则,所以(2)令,由余弦定理得:,因为所以所以所以【点睛】(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论