版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
青海省海东市平安区第二中学2023-2024学年数学高一下期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,那么()A. B. C. D.2.已知数列满足,,则()A. B. C. D.3.为了调查某工厂生产的一种产品的尺寸是否合格,现从500件产品中抽出10件进行检验,先将500件产品编号为000,001,002,…,499,在随机数表中任选一个数开始,例如选出第6行第8列的数4开始向右读取(为了便于说明,下面摘取了随机数表附表1的第6行至第8行),即第一个号码为439,则选出的第4个号码是()A.548 B.443 C.379 D.2174.设,,则的值可表示为()A. B. C. D.5.某超市收银台排队等候付款的人数及其相应概率如下:排队人数01234概率0.10.160.30.30.10.04则至少有两人排队的概率为()A.0.16 B.0.26 C.0.56 D.0.746.已知平面上四个互异的点、、、满足:,则的形状一定是()A.等边三角形 B.直角三角形 C.等腰三角形 D.钝角三角形7.若集合A=x∈Nx-1≤1A.3 B.4 C.7 D.88.为了了解某同学的数学学习情况,对他的6次数学测试成绩进行统计,作出的茎叶图如图所示,则下列关于该同学数学成绩的说法正确的是()A.中位数为83 B.众数为85 C.平均数为85 D.方差为199.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数 B.平均数C.方差 D.极差10.在中,角A,B,C的对边分别为a,b,c.已知,,,则B为()A. B.或 C. D.或二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,且,则______.12.设公比为q(q>0)的等比数列{an}的前n项和为{Sn}.若,,则q=______________.13.已知等差数列的前n项和为,若,则的值为______________.14.已知直线过点,,则直线的倾斜角为______.15.下列关于函数与的命题中正确的结论是______.①它们互为反函数;②都是增函数;③都是周期函数;④都是奇函数.16.已知,,若,则的取值范围是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某电视台有一档益智答题类综艺节日,每期节目从现场编号为01~80的80名观众中随机抽取10人答题.答题选手要从“科技”和“文艺”两类题目中选一类作答,一共回答10个问题,答对1题得1分.(1)若采用随机数表法抽取答题选手,按照以下随机数表,从下方带点的数字2开始向右读,每次读取两位数,一行用完接下一行左端,求抽取的第6个观众的编号.162277943949544354821737932378873509643842634916484421753315724550688770474476721763350258392120676(2)若采用等距系统抽样法抽取答题选手,且抽取的最小编号为06,求抽取的最大编号.(3)某期节目的10名答题选手中6人选科技类题目,4人选文艺类题目.其中选择科技类的6人得分的平均数为7,方差为;选择文艺类的4人得分的平均数为8,方差为.求这期节目的10名答题选手得分的平均数和方差.18.设数列的前项和为,若且求若数列满足,求数列的前项和.19.如图,在四边形中,,,.(1)若,求的面积;(2)若,,求的长.20.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5的数据如下表:时间周一周二周三周四周五车流量×(万辆)5051545758PM2.5的浓度(微克/立方米)6070747879(1)根据上表数据,用最小二乘法求出y关于x的线性回归方程;(2)若周六同一时间段的车流量是25万辆,试根据(1)求出的线性回归方程,预测此时PM2.5的浓度为多少(保留整数)?参考公式:由最小二乘法所得回归直线的方程是:,其中,21.已知圆,直线.圆与轴交于两点,是圆上不同于的一动点,所在直线分别与交于.(1)当时,求以为直径的圆的方程;(2)证明:以为直径的圆截轴所得弦长为定值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】依题意有,故2、A【解析】
由给出的递推式变形,构造出新的等比数列,由等比数列的通项公式求出的表达式,再利用等比数列的求和公式求解即可.【详解】解:解:在数列中,
由,得,
,
,
则数列是以2为首项,以2为公比的等比数列,
.,故选:A.【点睛】本题考查了数列的递推式,考查了等比关系的确定以及等比数列的求和公式,属中档题.3、D【解析】
利用随机数表写出每一个数字即得解.【详解】第一个号码为439,第二个号码为495,第三个号码为443,第四个号码为217.故选:D【点睛】本题主要考查随机数表,意在考查学生对该知识的理解掌握水平.4、A【解析】
由,可得到,然后根据反余弦函数的图象与性质即可得到答案.【详解】因为,所以,则.故选:A【点睛】本题主要考查反余弦函数的运用,熟练掌握反余弦函数的概念及性质是解决本题的关键.5、D【解析】
利用互斥事件概率计算公式直接求解.【详解】由某超市收银台排队等候付款的人数及其相应概率表,得:至少有两人排队的概率为:.故选:D.【点睛】本题考查概率的求法、互斥事件概率计算公式,考查运算求解能力,是基础题.6、C【解析】
由向量的加法法则和减法法则化简已知表达式,再由向量的垂直和等腰三角形的三线合一性质得解.【详解】设边的中点,则所以在中,垂直于的中线,所以是等腰三角形.故选C.【点睛】本题考查向量的线性运算和数量积,属于基础题.7、A【解析】
先求出A∩B的交集,再依据求真子集个数公式求出,也可列举求出。【详解】A=x∈Nx-1≤1A∩B=0,1,所以A∩B的真子集的个数为2【点睛】有限集合a1,a2,⋯8、C【解析】试题分析:A选项,中位数是84;B选项,众数是出现最多的数,故是83;C选项,平均数是85,正确;D选项,方差是,错误.考点:茎叶图的识别相关量的定义9、A【解析】
可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案.【详解】设9位评委评分按从小到大排列为.则①原始中位数为,去掉最低分,最高分,后剩余,中位数仍为,A正确.②原始平均数,后来平均数平均数受极端值影响较大,与不一定相同,B不正确③由②易知,C不正确.④原极差,后来极差可能相等可能变小,D不正确.【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.10、C【解析】
根据正弦定理得到,再根据知,得到答案.【详解】根据正弦定理:,即,根据知,故.故选:.【点睛】本题考查了根据正弦定理求角度,多解是容易发生的错误.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据的坐标表示,即可得出,解出即可.【详解】,,.【点睛】本题主要考查平行向量的坐标关系应用.12、【解析】将,两个式子全部转化成用,q表示的式子.即,两式作差得:,即:,解之得:(舍去)13、1【解析】
由等差数列的性质可得a7+a9+a11=3a9,而S17=17a9,故本题可解.【详解】∵a1+a17=2a9,∴S1717a9=170,∴a9=10,∴a7+a9+a11=3a9=1;故答案为:1.【点睛】本题考查了等差数列的前n项和公式与等差数列性质的综合应用,属于基础题.14、【解析】
根据两点求斜率的公式求得直线的斜率,然后求得直线的倾斜角.【详解】依题意,故直线的倾斜角为.【点睛】本小题主要考查两点求直线斜率的公式,考查直线斜率和倾斜角的对应关系,属于基础题.15、④【解析】
利用反函数,增减性,周期函数,奇偶性判断即可【详解】①,当时,的反函数是,故错误;②,当时,是增函数,故错误;③,不是周期函数,故错误;④,与都是奇函数,故正确故答案为④【点睛】本题考查正弦函数及其反函数的性质,熟记其基本性质是关键,是基础题16、【解析】数形结合法,注意y=,y≠0等价于x2+y2=9(y>0),它表示的图形是圆x2+y2=9在x轴之上的部分(如图所示).结合图形不难求得,当-3<b≤3时,直线y=x+b与半圆x2+y2=9(y>0)有公共点.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)42;(2)78;(3)平均数为7.4,方差为2.24【解析】
(1)根据随机数表依次读取数据即可,取01~80之间的数据;(2)根据系统抽样,确定组矩,计算可得;(3)根据平均数和方差得出数据的整体关系,整体代入求解10名选手的平均数和方差.【详解】(1)根据题意读取的编号依次是:20,96(超界),43,84(超界),26,34,91(超界),64,84(超界),42,17,所以抽取的第6个观众的编号为42;(2)若采用系统抽样,组矩为8,最小编号为06,则最大编号为6+9×8=78;(3)记选择科技类的6人成绩分别为:,选择文艺类的4人成绩分别为:,由题:,,,,所以这10名选手的平均数为方差为【点睛】此题考查统计相关知识,涉及随机数表读数,系统抽样和平均数与方差的计算,对计算公式的变形处理要求较高.18、(1);(2).【解析】
(1)由时,,再验证适合,于是得出,再利用等差数列的求和公式可求出;(2)求出数列的通项公式,判断出数列为等比数列,再利用等比数列的求和公式求出数列的前项和.【详解】(1)当且时,;也适合上式,所以,,则数列为等差数列,因此,;(2),且,所以,数列是等比数列,且公比为,所以.【点睛】本题考查数列的前项和与数列通项的关系,考查等差数列与等比数列的求和公式,考查计算能力,属于中等题.19、(1);(2).【解析】
(1)由余弦定理求出BC,由此能求出△ABC的面积.(2)设∠BAC=θ,AC=x,由正弦定理得从而,在中,由正弦定理得,建立关于θ的方程,由此利用正弦定理能求出sin∠CAD.再利用余弦定理可得结果.【详解】(1)因为,,,所以,即,所以.所以.(2)设,,则,在中,由正弦定理得:,所以;在中,,所以.即,化简得:,所以,所以,,所以在中,.即,解得或(舍).【点睛】本题考查正、余弦定理在解三角形中的应用,考查了引入角的技巧方法,考查运算求解能力,考查函数与方程思想,是中档题.20、(1);(2)37【解析】
(1)根据题中所给公式分别求出相关数据即可得解;(2)将代入(1)所得直线方程即可得解.【详解】(1),故y关于x的线性回归方程是:(2)当时,所以可以预测此时PM2.5的浓度约为37.【点睛】此题考查根据已知数据求回归直线的方程,根据公式直接求解,利用所得回归直线方程进行预测.21、(1);(2)证明见解析.【解析】
(1)讨论点的位置,根据直线的方程,直线的方程分别与直线方程联立,得出的坐标,进而得出圆心坐标以及半径,即可得出该圆的方程;(2)讨论点的位置,根据直角三角形的边角关系得出的坐标,进而得出圆心坐标以及半径,再由圆的弦长公式化简即可证明.【详解】(1)由圆的方程可知,①当点在第一象限时,如下图所示当时,,所以直线的方程为由,解得直线的方程为由,解得则的中点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 以个人名义签合同范本
- 外包安装协议合同范本
- 2023年省市场监督管理局直属事业单位招聘考试真题
- 家具专卖合同范本
- 监理典型合同范本
- 2023年陇南市文县招聘专职社区工作者考试真题
- 2023年临沂高新区选聘工作人员笔试真题
- 《基础会计》教案
- 2023年贵州农业职业学院招聘笔试真题
- 2023年甘肃陇东学院招聘事业编制工作人员笔试真题
- 2024年北京工业职业技术学院高职单招笔试历年职业技能测验典型例题与考点解析含答案
- Unit 7 Section A(2a-2e)课件人教版2024新教材七年级上册英语
- 诉求申请书范文
- 《小型水库雨水情测报和大坝安全监测设施建设与运行管护技术指南》
- 建筑施工现场作业人员应急救援培训内容
- 2024年中国邮政集团限公司海南省分公司社会招聘124人【重点基础提升】模拟试题(共500题)附带答案详解
- 2024年建筑《主体结构及装饰装修》考试习题库(浓缩500题)
- 幼儿园小班科学课件:《菊花开了》
- 2024年辽宁高考物理原题带解析
- 抖音火花合同电子版获取教程
- 2024年《关税法》要点解读
评论
0/150
提交评论