2023-2024学年江西省横峰中学数学高一下期末检测模拟试题含解析_第1页
2023-2024学年江西省横峰中学数学高一下期末检测模拟试题含解析_第2页
2023-2024学年江西省横峰中学数学高一下期末检测模拟试题含解析_第3页
2023-2024学年江西省横峰中学数学高一下期末检测模拟试题含解析_第4页
2023-2024学年江西省横峰中学数学高一下期末检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年江西省横峰中学数学高一下期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列的通项公式,前n项和为,若,则的最大值是()A.5 B.10 C.15 D.202.某小吃店的日盈利(单位:百元)与当天平均气温(单位:℃)之间有如下数据:/℃/百元对上述数据进行分析发现,与之间具有线性相关关系,则线性回归方程为()参考公式:A. B.C. D.3.设点M是直线上的一个动点,M的横坐标为,若在圆上存在点N,使得,则的取值范围是()A. B. C. D.4.为了得到函数的图象,只需将函数图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度5.在中,角的对边分别为,若,则A.无解 B.有一解C.有两解 D.解的个数无法确定6.在前项和为的等差数列中,若,则=()A. B. C. D.7.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,A.815 B.18 C.18.已知三角形ABC,如果,则该三角形形状为()A.锐角三角形 B.钝角三角形 C.直角三角形 D.以上选项均有可能9.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().A.收入最高值与收入最低值的比是B.结余最高的月份是月份C.与月份的收入的变化率与至月份的收入的变化率相同D.前个月的平均收入为万元10.若实数x,y满足条件,目标函数,则z的最大值为()A. B.1 C.2 D.0二、填空题:本大题共6小题,每小题5分,共30分。11.在正项等比数列中,,,则公比________.12.假设我国国民生产总值经过10年增长了1倍,且在这10年期间我国国民生产总值每年的年增长率均为常数,则______.(精确到)(参考数据)13.在中,内角的对边分别为,若的周长为,面积为,,则__________.14.对于任意实数x,不等式恒成立,则实数a的取值范围是______15.若满足约束条件,则的最小值为_________.16.用数学归纳法证明时,从“到”,左边需增乘的代数式是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四边形是平行四边形,平面平面,,,,,,,为的中点.(1)求证:平面;(2)求证:平面平面.18.设,,.(1)若,求实数的值;(2)若,求实数的值.19.如图,长方形材料中,已知,.点为材料内部一点,于,于,且,.现要在长方形材料中裁剪出四边形材料,满足,点、分别在边,上.(1)设,试将四边形材料的面积表示为的函数,并指明的取值范围;(2)试确定点在上的位置,使得四边形材料的面积最小,并求出其最小值.20.从甲、乙两班某项测试成绩中各随机抽取5名同学的成绩,得到如图所示的茎叶图.已知甲班成绩数据的中位数为13,乙班成绩数据的平均数为16.(1)求x,y的值;(2)试估计甲、乙两班在该项测试中整体水平的高低.(注:方差,其中为的平均数)21.某校举行汉字听写比赛,为了了解本次比赛成绩情况,从得分不低于50分的试卷中随机抽取100名学生的成绩(得分均为整数,满分100分)进行统计,请根据频率分布表中所提供的数据,解答下列问题:组号分组频数频率第1组[50,60)50.05第2组[60,70)0.35第3组[70,80)30第4组[80,90)200.20第5组[90,100]100.10合计1001.00(Ⅰ)求的值;(Ⅱ)若从成绩较好的第3、4、5组中按分层抽样的方法抽取6人参加市汉字听写比赛,并从中选出2人做种子选手,求2人中至少有1人是第4组的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

将的通项公式分解因式,判断正负分界处,进而推断的最大最小值得到答案.【详解】数列的通项公式当时,当或是最大值为或最小值为或的最大值为故答案为B【点睛】本题考查了前n项和为的最值问题,将其转化为通项公式的正负问题是解题的关键.2、B【解析】

计算出,,把数据代入公式计算,即可得到答案.【详解】由题可得:,,,,;所以,,则线性回归方程为;故答案选B【点睛】本题考查线性回归方程的求解,考查学生的计算能力,属于基础题.3、D【解析】

由题意画出图形,根据直线与圆的位置关系可得相切,设切点为P,数形结合找出M点满足|MP|≤|OP|的范围,从而得到答案.【详解】由题意可知直线与圆相切,如图,设直线x+y−2=0与圆相切于点P,要使在圆上存在点N,使得,使得最大值大于或等于时一定存在点N,使得,而当MN与圆相切时,此时|MP|取得最大值,则有|MP|≤|OP|才能满足题意,图中只有在M1、M2之间才可满足,∴的取值范围是[0,2].故选:D.【点睛】本题考查直线与圆的位置关系,根据数形结合思想,画图进行分析可得,属于中等题.4、C【解析】

利用诱导公式,的图象变换规律,得出结论.【详解】为了得到函数的图象,

只需将函数图象上所有的点向左平移个单位长度,

故选C.5、C【解析】

求得,根据,即可判定有两解,得到答案.【详解】由题意,因为,又由,且,所以有两解.【点睛】本题主要考查了三角形解的个数的判定,以及正弦定理的应用,着重考查了推理与运算能力,属于基础题.6、C【解析】

利用公式的到答案.【详解】项和为的等差数列中,故答案选C【点睛】本题考查了等差数列的前N项和,等差数列的性质,利用可以简化计算.7、C【解析】试题分析:开机密码的可能有(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5),共15种可能,所以小敏输入一次密码能够成功开机的概率是115【考点】古典概型【解题反思】对古典概型必须明确两点:①对于每个随机试验来说,试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等.只有在同时满足①、②的条件下,运用的古典概型计算公式P(A)=m8、B【解析】

由正弦定理化简已知可得:,由余弦定理可得,可得为钝角,即三角形的形状为钝角三角形.【详解】由正弦定理,,可得,化简得,由余弦定理可得:,又,为钝角,即三角形为钝角三角形.故选:B.【点睛】本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.9、D【解析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误.综上,故选.10、C【解析】

画出可行域和目标函数,根据平移得到最大值.【详解】若实数x,y满足条件,目标函数如图:当时函数取最大值为故答案选C【点睛】求线性目标函数的最值:当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小;当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用等比中项可求出,再由可求出公比.【详解】因为,,所以,,解得.【点睛】本题考查了等比数列的性质,考查了计算能力,属于基础题.12、【解析】

根据题意,设10年前的国民生产总值为,则10年后的国民生产总值为,结合题意可得,解可得的值,即可得答案.【详解】解:根据题意,设10年前的国民生产总值为,则10年后的国民生产总值为,则有,即,解可得:,故答案为:.【点睛】本题考查函数的应用,涉及指数、对数的运算,关键是得到关于的方程,属于基础题.13、3【解析】

分析:由题可知,中已知,面积公式选用,得,又利用余弦定理,即可求出的值.详解:,,由余弦定理,得又,,解得.故答案为3.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向;第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化;第三步:求结果.14、【解析】

对a分类讨论,利用判别式,即可得到结论.【详解】(1)a﹣2=0,即a=2时,﹣4<0,恒成立;(2)a﹣2≠0时,,解得﹣2<a<2,∴﹣2<a≤2故答案为:.【点睛】对于二次函数的研究一般从以几个方面研究:一是,开口;二是,对称轴,主要讨论对称轴与区间的位置关系;三是,判别式,决定于x轴的交点个数;四是,区间端点值.15、3【解析】

在平面直角坐标系内,画出可行解域,平行移动直线,在可行解域内,找到直线在纵轴上截距最小时所经过点的坐标,代入目标函数中,求出目标函数的最小值.【详解】在平面直角坐标系中,约束条件所表示的平面区域如下图所示:当直线经过点时,直线纵轴上截距最小,解方程组,因此点坐标为,所以的最小值为.【点睛】本题考查了线性目标函数最小值问题,正确画出可行解域是解题的关键.16、.【解析】

从到时左边需增乘的代数式是,化简即可得出.【详解】假设时命题成立,则,当时,从到时左边需增乘的代数式是.故答案为:.【点睛】本题考查数学归纳法的应用,考查推理能力与计算能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解析】

(1)取中点,连接,,利用三角形中位线定理,结合已知,可以证明出四边形为平行四边形,利用平行四边形的性质和线面平行的判定定理可以证明出平面;(2)在中,利用余弦定理可以求出的值,利用勾股定理的逆定理可以得,由平面平面,利用面面垂直的性质定理,可以得到平面,最后利用面面垂直的判断定理可以证明出平面平面.【详解】(1)取中点,连接,,在中,因为是中点所以且又因为,,所以且,即四边形为平行四边形,所以,又平面,平面平面.(2)在中,,,由余弦定理得,进而由勾股定理的逆定理得又因为平面,平面,又因为平面所以平面又平面,所以平面平面【点睛】本题考查了线面平行、面面垂直的证明,考查了线面平行的判断定理、面面垂直的性质定理和判定定理,考查了推理论证能力.18、(1);(2)【解析】

(1)由向量加法的坐标运算可得:,再由向量平行的坐标运算即可得解.(2)由向量垂直的坐标运算即可得解.【详解】解:(1),,,,,故,所以.(2),,,所以.【点睛】本题考查了向量加法的坐标运算、向量平行和垂直的坐标运算,属基础题.19、(1)见解析;(2)当时,四边形材料的面积最小,最小值为.【解析】分析:(1)通过直角三角形的边角关系,得出和,进而得出四边形材料的面积的表达式,再结合已知尺寸条件,确定角的范围.(2)根据正切的两角差公式和换元法,化简和整理函数表达式,最后由基本不等式,确定面积最小值及对应的点在上的位置.详解:解:(1)在直角中,因为,,所以,所以,在直角中,因为,,所以,所以,所以,.(2)因为,令,由,得,所以,当且仅当时,即时等号成立,此时,,,答:当时,四边形材料的面积最小,最小值为.点睛:本题考查三角函数的实际应用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化,注意换元法和基本不等式的合理运用.换元法求函数的值域,通过引入新变量(辅助式,辅助函数等),把所有分散的已知条件联系起来,将已知条件和要求的结果结合起来,把隐藏在条件中的性质显现出来,或把繁琐的表达式简化,之后就可以利用各种常见的函数的图象和性质或基本不等式来解决问题.常见的换元方法有代数和三角代换两种.要特别注意原函数的自变量与新函数自变量之间的关系.20、(1),;(2)乙班的整体水平较高【解析】

(1)由茎叶图数据以及平均数,中位数的定义求解即可;(2)分别计算出甲乙两班的方差,得出,所以乙班的整体水平较高.【详解】(1)由茎叶图知甲班成绩数据依次为9,12,,20,26所以中位数为,得;乙班成绩数据的平均数,得.(2)乙班整体水平较高.理由:由题意及(1)得因为,所以乙班的整体水平较高.【点睛】本题主要考查了利用茎叶图计算平均数,中位数以及方差的应用,属于中档题.21、(1)35,0.30;(2).【解析】试题分析:(Ⅰ)直接利用频率和等于1求出b,用样本容量乘以频率求a的值;(Ⅱ)由分层抽样方法求出所抽取的6人中第三、第四、第五组的学生数,利用列举

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论