2024届山东省青岛第三中学高一下数学期末考试试题含解析_第1页
2024届山东省青岛第三中学高一下数学期末考试试题含解析_第2页
2024届山东省青岛第三中学高一下数学期末考试试题含解析_第3页
2024届山东省青岛第三中学高一下数学期末考试试题含解析_第4页
2024届山东省青岛第三中学高一下数学期末考试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省青岛第三中学高一下数学期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆,圆,分别为圆上的点,为轴上的动点,则的最小值为()A. B. C. D.2.直线与直线垂直,则的值为()A.3 B. C.2 D.3.若,则()A.-1 B. C.-1或 D.或4.已知,函数的最小值是()A.5 B.4 C.8 D.65.某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,事件“至少1名女生”与事件“全是男生”()A.是互斥事件,不是对立事件B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件D.既不是互斥事件也不是对立事件6.等比数列中,,则等于是()A. B.4 C. D.7.已知等差数列的前项和,若,则()A.25 B.39 C.45 D.548.如果执行右面的框图,输入,则输出的数等于()A. B. C. D.9.下列四个函数中,与函数完全相同的是()A. B.C. D.10.直线的倾斜角为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设,且,则的取值范围是______.12.已知数列的前项和为,若,则______.13.点从点出发,沿单位圆顺时针方向运动弧长到达点,则点的坐标为__________.14.函数的定义域记作集合,随机地投掷一枚质地均匀的正方体骰子(骰子的每个面上分别标有点数,,,),记骰子向上的点数为,则事件“”的概率为________.15.若直线始终平分圆的周长,则的最小值为________16.已知,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数;(3)若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)1:12:13:44:518.如图,已知三棱柱的侧棱垂直于底面,,,点,分别为和的中点.(1)若,求三棱柱的体积;(2)证明:平面;(3)请问当为何值时,平面,试证明你的结论.19.已知三角形ABC的顶点为,,,M为AB的中点.(1)求CM所在直线的方程;(2)求的面积.20.在直角坐标系中,以坐标原点为圆心的圆与直线相切。求圆的方程;若圆上有两点关于直线对称,且,求直线的方程;21.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求f(x)的单调递增区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

求出圆关于轴的对称圆的圆心坐标A,以及半径,然后求解圆A与圆的圆心距减去两个圆的半径和,即可求得的最小值,得到答案.【详解】如图所示,圆关于轴的对称圆的圆心坐标,半径为1,圆的圆心坐标为,,半径为3,由图象可知,当三点共线时,取得最小值,且的最小值为圆与圆的圆心距减去两个圆的半径之和,即,故选D.【点睛】本题主要考查了圆的对称圆的方程的求解,以及两个圆的位置关系的应用,其中解答中合理利用两个圆的位置关系是解答本题的关键,着重考查了数形结合法,以及推理与运算能力,属于基础题.2、A【解析】

根据两条直线垂直的条件列方程,解方程求得的值.【详解】由于直线与直线垂直,所以,解得.故选:A【点睛】本小题主要考查两条直线垂直的条件,属于基础题.3、C【解析】

将已知等式平方,可根据二倍角公式、诱导公式和同角三角函数平方关系将等式化为,解方程可求得结果.【详解】由得:即,解得:或本题正确选项:【点睛】本题考查三角函数值的求解问题,关键是能够通过平方运算,将等式化简为关于的方程,涉及到二倍角公式、诱导公式和同角三角函数平方关系的应用.4、D【解析】试题分析:因为该函数的单调性较难求,所以可以考虑用不等式来求最小值,,因为,由重要不等式可知,所以,本题正确选项为D.考点:重要不等式的运用.5、C【解析】至少1名女生的对立事件就是全是男生.因此事件“至少1名女生”与事件“全是男生”既是互斥事件,也是对立事件6、B【解析】

利用等比数列通项公式直接求解即可.【详解】因为是等比数列,所以.故选:B【点睛】本题考查了等比数列通项公式的应用,属于基础题.7、A【解析】

设等差数列的公差为,从而根据,即可求出,这样根据等差数列的前项和公式即可求出.【详解】解:设等差数列的公差为,则由,得:,,,故选:A.【点睛】本题主要考查等差数列的通项公式和等差数列的前项和公式,属于基础题.8、D【解析】试题分析:当时,该程序框图所表示的算法功能为:,故选D.考点:程序框图.9、C【解析】

先判断函数的定义域是否相同,再通过化简判断对应关系是否相同,从而判断出与相同的函数.【详解】的定义域为,A.,因为,所以,定义域为或,与定义域不相同;B.,因为,所以,所以定义域为,与定义域不相同;C.,因为,所以定义域为,又因为,所以与相同;D.,因为,所以,定义域为,与定义域不相同.故选:C.【点睛】本题考查与三角函数有关的相同函数的判断,难度一般.判断相同函数时,首先判断定义域是否相同,定义域相同时再去判断对应关系是否相同(函数化简),结合定义域与对应关系即可判断出是否是相同函数.10、D【解析】

求得直线的斜率,由此求得直线的倾斜角.【详解】依题意,直线的斜率为,对应的倾斜角为,故选D.【点睛】本小题主要考查由直线一般式求斜率和倾斜角,考查特殊角的三角函数值,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

通过可求得x的取值范围,接着利用反正弦函数的定义可得的取值范围.【详解】,,即.由反正弦函数的定义可得,即的取值范围为.故答案为:.【点睛】本题主要考查余弦函数的定义域和值域,反正弦函数的定义,属于基础题.12、【解析】

利用和的关系计算得到答案.【详解】当时,满足通项公式故答案为【点睛】本题考查了和的关系,忽略的情况是容易发生的错误.13、【解析】

由题意可得OQ恰好是角的终边,利用任意角的三角函数的定义,求得Q点的坐标.【详解】点P从点出发,沿单位圆顺时针方向运动弧长到达Q点,则OQ恰好是角的终边,故Q点的横坐标,纵坐标为,故答案为:【点睛】本题主要考查任意角的三角函数的定义,属于容易题.14、【解析】要使函数有意义,则且,即且,即,随机地投掷一枚质地均匀的正方体骰子,记骰子向上的点数为,则,则事件“”的概率为.15、9【解析】

平分圆的直线过圆心,由此求得的等量关系式,进而利用基本不等式求得最小值.【详解】由于直线始终平分圆的周长,故直线过圆的圆心,即,所以.【点睛】本小题主要考查直线和圆的位置关系,考查利用基本不等式求最小值,属于基础题.16、【解析】

利用同角三角函数的基本关系将弦化切,再代入计算可得.【详解】解:,故答案为:【点睛】本题考查同角三角函数的基本关系,齐次式的计算,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0.005;(2)平均分为73,众数为65,中位数为;(3)10【解析】

(1)根据频率之和为1,直接列式计算即可;(2)平均数等于每组的中间值乘以该组频率,再求和;众数指频率最大的一组的中间值;中位数两端的小长方形面积之和均为0.5;(3)根据题意分别求出,,,的人数,即可得出结果.【详解】(1)由频率分布直方图可得:,(2)平均分为众数为65分.中位数为(3)数学成绩在的人数为,在的人数为,在的人数为,在的人数为,在的人数为,所以数学成绩在之外的人数为100-5-20-40-25=10.【点睛】本题主要考查样本估计总体,由题中频率分布直方图,结合平均数、中位数等概念,即可求解,属于基础题型.18、(1)4;(2)证明见解析;(3)时,平面,证明见解析.【解析】

(1)直接根据三棱柱体积计算公式求解即可;(2)利用中位线证明面面平行,再根据面面平行的性质定理证明平面;(3)首先设为,利用平面列出关于参数的方程求解即可.【详解】(1)∵三棱柱的侧棱垂直于底面,且,,,∴由三棱柱体积公式得:;(2)证明:取的中点,连接,,∵,分别为和的中点,∴,,∵平面,平面,∴平面,平面,又,∴平面平面,∵平面,∴平面;(3)连接,设,则由题意知,,∵三棱柱的侧棱垂直于底面,∴平面平面,∵,∴,又点是的中点,∴平面,∴,要使平面,只需即可,又∵,∴,∴,即,∴,则时,平面.【点睛】本题考查了三棱柱的体积公式,线面平行的证明,利用线面垂直求参数,属于难题.19、(1)(2)【解析】

(1)先求出点M的坐标,再写出直线的两点式方程化简即得解;(2)求出和点A到直线CM的距离即得解.【详解】(1)AB中点M的坐标是,所以中线CM所在直线的方程是,即.(2),因为直线CM的方程是,所以点A到直线CM的距离是,又,所以.【点睛】本题主要考查直线方程的求法,考查两点间的距离的计算和点到直线的距离的计算,意在考查学生对这些知识的理解掌握水平.20、(1)(2)或【解析】

(1)直接利用点到直线的距离公式求出半径,即可得出答案。(2)设出直线,求出圆心到直线的距离,利用半弦长直角三角形解出即可。【详解】解(1),所以圆的方程为(2)由题意,可设直线的方程为则圆心到直线的距离则,即所以直线的方程为或【点睛】本题考查直线与圆的位置关系,属于基础题。21、(Ⅰ)(Ⅱ)().【解析】试题分析:(Ⅰ)运用两角和的正弦公式对f(x)化简整理,由周期公式求ω的值;(Ⅱ)根据函数y=sinx的单调递增区间对应求解即可.试题解析:(Ⅰ)因为,所以的最小正周期.依题意,,解得.(Ⅱ)由(Ⅰ)知.函数的单调递增区间为().由,得.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论