版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山西省运城市芮城县高一数学第二学期期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列说法错误的是()A.若样本的平均数为5,标准差为1,则样本的平均数为11,标准差为2B.身高和体重具有相关关系C.现有高一学生30名,高二学生40名,高三学生30名,若按分层抽样从中抽取20名学生,则抽取高三学生6名D.两个变量间的线性相关性越强,则相关系数的值越大2.等差数列的前项和为,若,且,则()A.10 B.7 C.12 D.33.已知三棱柱的底面为直角三角形,侧棱长为2,体积为1,若此三棱柱的顶点均在同一球面上,则该球半径的最小值为()A.1 B.2 C. D.4.函数的图象的一条对称轴方程是()A. B. C. D.5.在空间中,可以确定一个平面的条件是()A.一条直线B.不共线的三个点C.任意的三个点D.两条直线6.下列各角中,与126°角终边相同的角是()A. B. C. D.7.中,角的对边分别为,且,则角()A. B. C. D.8.一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,从中任意取出一个,则取出的小正方体两面涂有油漆的概率是()A.127 B.29 C.49.已知数列满足,,则的值为()A. B. C. D.10.下列函数中,既是偶函数,又在上递增的函数的个数是().①;②;③;④向右平移后得到的函数.A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.三阶行列式中,元素4的代数余子式的值为________.12.若则的最小值是__________.13.若直线y=x+m与曲线x=恰有一个公共点,则实数m的取值范围是______.14.在中,角,,所对的边分别为,,,若的面积为,且,,成等差数列,则最小值为______.15.某银行一年期定期储蓄年利率为2.25%,如果存款到期不取出继续留存于银行,银行自动将本金及80%的利息(利息须交纳20%利息税,由银行代交)自动转存一年期定期储蓄,某人以一年期定期储蓄存入银行20万元,则5年后,这笔钱款交纳利息税后的本利和为________元.(精确到1元)16.定义为数列的均值,已知数列的均值,记数列的前项和是,若对于任意的正整数恒成立,则实数k的取值范围是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的内角所对的边分别为,且,.(1)若,求角的值;(2)若,求的值.18.如图半圆的直径为4,为直径延长线上一点,且,为半圆周上任一点,以为边作等边(、、按顺时针方向排列)(1)若等边边长为,,试写出关于的函数关系;(2)问为多少时,四边形的面积最大?这个最大面积为多少?19.如图,平行四边形中,是的中点,交于点.设,.(1)分别用,表示向量,;(2)若,,求.20.已知函数,(1)若,求a的值,并判断的奇偶性;(2)求不等式的解集.21.如图,当甲船位于处时获悉,在其正东方向相距20海里的处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往处救援?(角度精确到1°,参考数据:,)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
利用平均数和方差的定义,根据线性回归的有关知识和分层抽样原理,即可判断出答案.【详解】对于A:若样本的平均数为5,标准差为1,则样本的平均数2×5+1=11,标准差为2×1=2,故正确对于B:身高和体重具有相关关系,故正确对于C:高三学生占总人数的比例为:所以抽取20名学生中高三学生有名,故正确对于D:两个变量间的线性相关性越强,应是相关系数的绝对值越大,故错误故选:D【点睛】本题考查了线性回归的有关知识,以及平均数和方差、分层抽样原理的应用问题,是基础题.2、C【解析】
由等差数列的前项和公式解得,由,得,由此能求出的值。【详解】解:差数列的前n项和为,,,解得,解得,故选:C。【点睛】本题考查等差数列的性质等基础知识,考查运算求解能力,是基础题.3、D【解析】
先证明棱柱为直棱柱,再求出棱柱外接球的半径,利用基本不等式求出其最小值.【详解】∵三棱柱内接于球,∴棱柱各侧面均为平行四边形且内接于圆,所以棱柱的侧棱都垂直底面,所以该三棱柱为直三棱柱.设底面三角形的两条直角边长为,,∵三棱柱的高为2,体积是1,∴,即,将直三棱柱补成一个长方体,则直三棱柱与长方体有同一个外接球,所以球的半径为.故选D【点睛】本题主要考查几何体外接球的半径的计算和基本不等式求最值,意在考查学生对这些知识的理解掌握水平,属于基础题.4、A【解析】
由,得,,故选A.5、B【解析】试题分析:根据平面的基本性质及推论,即确定平面的几何条件,即可知道答案.解:对于A.过一条直线可以有无数个平面,故错;对于C.过共线的三个点可以有无数个平面,故错;对于D.过异面的两条直线不能确定平面,故错;由平面的基本性质及推论知B正确.故选B.考点:平面的基本性质及推论.6、B【解析】
写出与126°的角终边相同的角的集合,取k=1得答案.【详解】解:与126°的角终边相同的角的集合为{α|α=126°+k•360°,k∈Z}.取k=1,可得α=486°.∴与126°的角终边相同的角是486°.故选B.【点睛】本题考查终边相同角的计算,是基础题.7、B【解析】
根据题意结合正弦定理,由题,可得三角形为等边三角形,即可得解.【详解】由题:即,中,由正弦定理可得:,即,两边同时平方:,由题,所以,即,所以,即为等边三角形,所以.故选:B【点睛】此题考查利用正弦定理进行边角互化,根据边的关系判断三角形的形状,求出三角形的内角.8、C【解析】
先求出基本事件总数n=27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,由此能求出在27个小正方体中,任取一个其两面涂有油漆的概率.【详解】∵一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,∴基本事件总数n=27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,则在27个小正方体中,任取一个其两面涂有油漆的概率P=1227=故选:C【点睛】本题考查概率的求法,考查古典概型、正方体性质等基础知识,考查推理论证能力、空间想象能力,考查函数与方程思想,是基础题.9、B【解析】
由,得,然后根据递推公式逐项计算出、的值,即可得出的值.【详解】,,则,,,因此,,故选B.【点睛】本题考查数列中相关项的计算,解题的关键就是递推公式的应用,考查计算能力,属于基础题.10、B【解析】
将①②③④中的函数解析式化简,分析各函数的奇偶性及其在区间上的单调性,可得出结论.【详解】对于①中的函数,该函数为偶函数,当时,,该函数在区间上不单调;对于②中的函数,该函数为偶函数,且在区间上单调递减;对于③中的函数,该函数为偶函数,且在区间上单调递增;对于④,将函数向右平移后得到的函数为,该函数为奇函数,且当时,,则函数在区间上不单调.故选:B.【点睛】本题考查三角函数单调性与奇偶性的判断,同时也考查了三角函数的相位变换,熟悉正弦、余弦和正切函数的基本性质是判断的关键,考查推理能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、6【解析】
利用代数余子式的定义直接求解.【详解】三阶行列式中,元素4的代数余子式的值为:.故答案为:6.【点睛】本题主要考查了三阶行列式中元素的代数余子式的求法,属于中档题.12、【解析】
根据对数相等得到,利用基本不等式求解的最小值得到所求结果.【详解】则,即由题意知,则,则当且仅当,即时取等号本题正确结果:【点睛】本题考查基本不等式求解和的最小值问题,关键是能够利用对数相等得到的关系,从而构造出符合基本不等式的形式.13、{m|-1<m≤1或m=-}【解析】
由x=,化简得x2+y2=1,注意到x≥0,所以这个曲线应该是半径为1,圆心是(0,0)的半圆,且其图象只在一、四象限.画出图象,这样因为直线与其只有一个交点,由此能求出实数m的取值范围.【详解】由x=,化简得x2+y2=1,注意到x≥0,所以这个曲线应该是半径为1,圆心是(0,0)的半圆,且其图象只在一、四象限.画出图象,这样因为直线与其只有一个交点,从图上看出其三个极端情况分别是:①直线在第四象限与曲线相切,②交曲线于(0,﹣1)和另一个点,③与曲线交于点(0,1).直线在第四象限与曲线相切时解得m=﹣,当直线y=x+m经过点(0,1)时,m=1.当直线y=x+m经过点(0,﹣1)时,m=﹣1,所以此时﹣1<m≤1.综上满足只有一个公共点的实数m的取值范围是:﹣1<m≤1或m=﹣.故答案为:{m|-1<m≤1或m=-}.【点睛】本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.14、4【解析】
先根据,,成等差数列得到,再根据余弦定理得到满足的等式关系,而由面积可得,利用基本不等式可求的最小值.【详解】因为,,成等差数列,,故.由余弦定理可得.由基本不等式可以得到,当且仅当时等号成立.因为,所以,所以即,当且仅当时等号成立.故填4.【点睛】三角形中与边有关的最值问题,可根据题设条件找到各边的等式关系或角的等量关系,再根据边的关系式的结构特征选用合适的基本不等式求最值,也可以利用正弦定理把与边有关的目标代数式转化为与角有关的三角函数式后再求其最值.15、218660【解析】
20万存款满一年到期后利息有200000×2.25%×(1-20%),本息和共200000×2.25%×(【详解】20万存款满一年到期后利息有200000×2.25%×(1-20%),本息和共200000×2.25%×(200000×(1.018)故填218660.【点睛】本题主要考查了银行存款的复利问题,由固定公式可用,本息和=本金×(1+利率×(1-16、【解析】
因为,,从而求出,可得数列为等差数列,记数列为,从而将对任意的恒成立化为,,即可求得答案.【详解】,,故,,则,对也成立,,则,数列为等差数列,记数列为.故对任意的恒成立,可化为:,;即,解得,,故答案为:.【点睛】本题考查了根据递推公式求数列通项公式和数列的单调性,掌握判断数列前项和最大值的方法是解题关键,考查了分析能力和计算能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2)、.【解析】
(1)由先求的值,再求角即可;(2)先由求出,再根据求出即可.【详解】(1)由已知,又,所以,即,或;(2)因为,由可得,又因为,所以,即,总之、.【点睛】本题主要考查正弦定理、余弦定理及三角形面积公式的应用,属常规考题.18、(1);(2)θ=时,四边形OACB的面积最大,其最大面积为.【解析】
(1)根据余弦定理可求得(2)先表示出△ABC的面积及△OAB的面积,进而表示出四边形OACB的面积,并化简函数的解析式为正弦型函数的形式,再结合正弦型函数最值的求法进行求解.【详解】(1)由余弦定理得则(2)四边形OACB的面积=△OAB的面积+△ABC的面积则△ABC的面积△OAB的面积•OA•OB•sinθ•2•4•sinθ=4sinθ四边形OACB的面积4sinθ=sin(θ﹣)∴当θ﹣=,即θ=时,四边形OACB的面积最大,其最大面积为.【点睛】本题考查利用正余弦定理求解面积最值,其中准确列出面积表达式是关键,考查化简求值能力,是中档题19、(1),(2)2【解析】
(1)由平面的加法可得,又根据三角形相似得到,再根据向量的减法可得的不等式.
(2)由平面向量数量积运算得,然后再将条件代入可得答案.【详解】(1).由∽,又所以,即(2)由,【点睛】本题考查了平面向量的线性运算及平面向量数量积运算,属中档题.20、(1),,是偶函数(2)或【解析】
(1)先由已知求出,然后结合利用定义法判断函数的奇偶性即可;(2)讨论当时,当时对数函数的单调性求解不等式即可.【详解】解:(1)由题意得,,即,则,,则,函数的定义域为,则,是偶函数;(2)当时,在上是减函数,,,解得,所以原不等式的解集为;当时,在上是增函数,,,即,所以原不等式的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中式面点师理论培训
- 中考数学二轮复习专项21~23题对点提分训练(二)课件
- 统编版2024-2025学年三年级语文上册期中考试卷(含答案)
- 山东省菏泽市第一中学2024-2025学年高二上学期第二次月考数学试题(含答案)
- 2024年高一上学期10月份月考测试卷
- Windows Server网络管理项目教程(Windows Server 2022)(微课版)课件 易月娥 项目9、10 VPN服务器的配置与管理、NAT服务器的配置与管理
- 面向SDG的国网行动-破解电力线路与自然的冲突
- 大单元教学理念及其定义、特点与实施策略
- 高中物理第一章电与磁第二节点电荷间的相互作用课件粤教版选修1-
- Windows Server网络管理项目教程(Windows Server 2022)(微课版)10.1 知识引入
- 11.9消防宣传日关注消防安全主题班会课件
- 期中达标检测卷(试题)-2024-2025学年北师大版二年级数学上册
- 部编人教版《道德与法治》六年级上册第6课《人大代表为人民》课件
- 盘扣式卸料平台施工方案
- CTF信息安全竞赛理论知识考试题库大全-上(单选题)
- 2024年注册安全工程师考试题库【含答案】
- 8.2太原天网系统运行维护方案
- 工程机械设计中轻量化技术的应用
- 机械工程与自动化的关系探讨
- ncc学习01课件销售管理v11
- 毕业设计液压剪切机液压系统设计
评论
0/150
提交评论