版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省扬州市邵樊片2024届中考数学四模试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338600000亿次,数字338600000用科学记数法可简洁表示为()A.3.386×108 B.0.3386×109 C.33.86×107 D.3.386×1092.(3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()A.2 B. C.5 D.3.如图是二次函数y=ax2+bx+c(a≠0)图象如图所示,则下列结论,①c<0,②2a+b=0;③a+b+c=0,④b2–4ac<0,其中正确的有()A.1个 B.2个 C.3个 D.44.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN=3,则AC的长是()A.12 B.14 C.16 D.185.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是()A.①② B.②④ C.②③ D.③④6.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A,B在围成的正方体中的距离是()A.0 B.1 C. D.7.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正确的是()A.a=b•cosA B.c=a•sinA C.a•cotA=b D.a•tanA=b8.将一把直尺与一块直角三角板如图放置,如果,那么的度数为().A. B. C. D.9.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根10.有一组数据:3,4,5,6,6,则这组数据的平均数、众数、中位数分别是()A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,6二、填空题(本大题共6个小题,每小题3分,共18分)11.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买_____个.12.如图,如果四边形ABCD中,AD=BC=6,点E、F、G分别是AB、BD、AC的中点,那么△EGF面积的最大值为_____.13.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为____.14.如图,在等腰△ABC中,AB=AC,BC边上的高AD=6cm,腰AB上的高CE=8cm,则BC=_____cm15.如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是_____cm.16.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于的等式为________.三、解答题(共8题,共72分)17.(8分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,求购买A型和B型公交车每辆各需多少万元?预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?18.(8分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球20个,B种品牌的足球30个,共花费4600元,已知购买4个B种品牌的足球与购买5个A种品牌的足球费用相同.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.(2)学校为了响应“足球进校园”的号召,决定再次购进A、B两种品牌足球共42个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高5元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的80%,且保证这次购买的B种品牌足球不少于20个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?19.(8分)如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D求证:AC∥DE;若BF=13,EC=5,求BC的长.20.(8分)如图,已知点A,B,C在半径为4的⊙O上,过点C作⊙O的切线交OA的延长线于点D.(Ⅰ)若∠ABC=29°,求∠D的大小;(Ⅱ)若∠D=30°,∠BAO=15°,作CE⊥AB于点E,求:①BE的长;②四边形ABCD的面积.21.(8分)已知关于的方程有两个实数根.求的取值范围;若,求的值;22.(10分)手机下载一个APP、缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行,共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步、共享经济带来的便利的同时,随意停放、加装私锁、推车下河、大卸八块等毁坏共享单车的行为也层出不穷•某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆.一月份该公司投入市场的自行车至少有多少辆?二月份的损坏率为20%,进入三月份,该公司新投入市场的自行车比二月份增长4a%,由于媒体的关注,毁坏共享单车的行为点燃了国民素质的大讨论,三月份的损坏率下降为a%,三月底可使用的自行车达到7752辆,求a的值.23.(12分)如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.24.反比例函数的图象经过点A(2,3).(1)求这个函数的解析式;(2)请判断点B(1,6)是否在这个反比例函数的图象上,并说明理由.
参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:数字338600000用科学记数法可简洁表示为3.386×108故选:A【点睛】本题考查科学记数法—表示较大的数.2、B【解析】
根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.故选B【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.3、B【解析】
由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①抛物线与y轴交于负半轴,则c<1,故①正确;②对称轴x1,则2a+b=1.故②正确;③由图可知:当x=1时,y=a+b+c<1.故③错误;④由图可知:抛物线与x轴有两个不同的交点,则b2﹣4ac>1.故④错误.综上所述:正确的结论有2个.故选B.【点睛】本题考查了图象与二次函数系数之间的关系,会利用对称轴的值求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.4、C【解析】延长线段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN.在△ABN与△AEN中,∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90∘,∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.又∵M是△ABC的边BC的中点,∴CE=2MN=2×3=6,∴AC=AE+CE=10+6=16.故选C.5、D【解析】试题分析:首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.解:根据总人数列方程,应是40m+10=43m+1,①错误,④正确;根据客车数列方程,应该为,②错误,③正确;所以正确的是③④.故选D.考点:由实际问题抽象出一元一次方程.6、C【解析】试题分析:本题考查了勾股定理、展开图折叠成几何体、正方形的性质;熟练掌握正方形的性质和勾股定理,并能进行推理计算是解决问题的关键.由正方形的性质和勾股定理求出AB的长,即可得出结果.解:连接AB,如图所示:根据题意得:∠ACB=90°,由勾股定理得:AB==;故选C.考点:1.勾股定理;2.展开图折叠成几何体.7、C【解析】∵∠C=90°,∴cosA=,sinA=,tanA=,cotA=,∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,∴只有选项C正确,故选C.【点睛】本题考查了三角函数的定义,熟练掌握三角函数的定义并且灵活运用是解题的关键.8、D【解析】
根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,再根据两直线平行,同位角相等可得∠2=∠1.【详解】如图,由三角形的外角性质得:∠1=90°+∠1=90°+58°=148°.∵直尺的两边互相平行,∴∠2=∠1=148°.故选D.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.9、D【解析】
根据方程有两个相等的实数根可得出b=a+1或b=-(a+1),当b=a+1时,-1是方程x2+bx+a=0的根;当b=-(a+1)时,1是方程x2+bx+a=0的根.再结合a+1≠-(a+1),可得出1和-1不都是关于x的方程x2+bx+a=0的根.【详解】∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=-(a+1).当b=a+1时,有a-b+1=0,此时-1是方程x2+bx+a=0的根;当b=-(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠-(a+1),∴1和-1不都是关于x的方程x2+bx+a=0的根.故选D.【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.10、C【解析】
解:在这一组数据中6是出现次数最多的,故众数是6;而将这组数据从小到大的顺序排列3,4,5,6,6,处于中间位置的数是5,平均数是:(3+4+5+6+6)÷5=4.8,故选C.【点睛】本题考查众数;算术平均数;中位数.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】
设购买篮球x个,则购买足球个,根据总价单价购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可.【详解】设购买篮球x个,则购买足球个,根据题意得:,解得:.为整数,最大值为1.故答案为1.【点睛】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.12、4.1.【解析】
取CD的值中点M,连接GM,FM.首先证明四边形EFMG是菱形,推出当EF⊥EG时,四边形EFMG是矩形,此时四边形EFMG的面积最大,最大面积为9,由此可得结论.【详解】解:取CD的值中点M,连接GM,FM.∵AG=CG,AE=EB,∴GE是△ABC的中位线∴EG=BC,同理可证:FM=BC,EF=GM=AD,∵AD=BC=6,∴EG=EF=FM=MG=3,∴四边形EFMG是菱形,∴当EF⊥EG时,四边形EFMG是矩形,此时四边形EFMG的面积最大,最大面积为9,∴△EGF的面积的最大值为S四边形EFMG=4.1,故答案为4.1.【点睛】本题主要考查菱形的判定和性质,利用了三角形中位线定理,掌握菱形的判定:四条边都相等的四边形是菱形是解题的关键.13、【解析】
随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用绿灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可.【详解】抬头看信号灯时,是绿灯的概率为.故答案为:.【点睛】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=2.14、【解析】
根据三角形的面积公式求出=,根据等腰三角形的性质得到BD=DC=BC,根据勾股定理列式计算即可.【详解】∵AD是BC边上的高,CE是AB边上的高,∴AB•CE=BC•AD,∵AD=6,CE=8,∴=,∴=,∵AB=AC,AD⊥BC,∴BD=DC=BC,∵AB2−BD2=AD2,∴AB2=BC2+36,即BC2=BC2+36,解得:BC=.故答案为:.【点睛】本题考查的是等腰三角形的性质、勾股定理的应用和三角形面积公式的应用,根据三角形的面积公式求出腰与底的比是解题的关15、【解析】
设圆锥的底面圆的半径为r,由于∠AOB=90°得到AB为圆形纸片的直径,则OB=cm,根据弧长公式计算出扇形OAB的弧AB的长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长进行计算.【详解】解:设圆锥的底面圆的半径为r,连结AB,如图,∵扇形OAB的圆心角为90°,∴∠AOB=90°,∴AB为圆形纸片的直径,∴AB=4cm,∴OB=cm,∴扇形OAB的弧AB的长=π,∴2πr=π,∴r=(cm).故答案为.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理和弧长公式.16、(a+b)2﹣(a﹣b)2=4ab【解析】
根据长方形面积公式列①式,根据面积差列②式,得出结论.【详解】S阴影=4S长方形=4ab①,S阴影=S大正方形﹣S空白小正方形=(a+b)2﹣(b﹣a)2②,由①②得:(a+b)2﹣(a﹣b)2=4ab.故答案为(a+b)2﹣(a﹣b)2=4ab.【点睛】本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.三、解答题(共8题,共72分)17、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【解析】
(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由“购买A型和B型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.【详解】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:,因为a是整数,所以a=6,7,8;则(10﹣a)=4,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.18、(1)购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元;(2)有三种方案,具体见解析;(3)3150元.【解析】试题分析:(1)、设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据题意列出二元一次方程组,从而求出x和y的值得出答案;(2)、设第二次购买A种足球m个,则购买B种足球(50-m)个,根据题意列出不等式组求出m的取值范围,从而得出答案;(3)、分别求出第二次购买时足球的单件,然后得出答案.试题解析:(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,解得(2)设第二次购买A种足球m个,则购买B种足球(50-m)个,解得25≤m≤27∵m为整数∴m=25、26、27(3)∵第二次购买足球时,A种足球单价为50+4=54(元),B种足球单价为80×0.9=72∴当购买B种足球越多时,费用越高此时25×54+25×72=3150(元)19、(1)证明见解析;(2)4.【解析】
(1)首先证明△ABC≌△DFE可得∠ACE=∠DEF,进而可得AC∥DE;(2)根据△ABC≌△DFE可得BC=EF,利用等式的性质可得EB=CF,再由BF=13,EC=5进而可得EB的长,然后可得答案.【详解】解:(1)在△ABC和△DFE中,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;(2)∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB=4,∴CB=4+5=1.【点睛】考点:全等三角形的判定与性质.20、(1)∠D=32°;(2)①BE=;②【解析】
(Ⅰ)连接OC,CD为切线,根据切线的性质可得∠OCD=90°,根据圆周角定理可得∠AOC=2∠ABC=29°×2=58°,根据直角三角形的性质可得∠D的大小.(Ⅱ)①根据∠D=30°,得到∠DOC=60°,根据∠BAO=15°,可以得出∠AOB=150°,进而证明△OBC为等腰直角三角形,根据等腰直角三角形的性质得出根据圆周角定理得出根据含角的直角三角形的性质即可求出BE的长;②根据四边形ABCD的面积=S△OBC+S△OCD﹣S△OAB进行计算即可.【详解】(Ⅰ)连接OC,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠AOC=2∠ABC=29°×2=58°,∴∠D=90°﹣58°=32°;(Ⅱ)①连接OB,在Rt△OCD中,∵∠D=30°,∴∠DOC=60°,∵∠BAO=15°,∴∠OBA=15°,∴∠AOB=150°,∴∠OBC=150°﹣60°=90°,∴△OBC为等腰直角三角形,∴∵在Rt△CBE中,∴②作BH⊥OA于H,如图,∵∠BOH=180°﹣∠AOB=30°,∴∴四边形ABCD的面积=S△OBC+S△OCD﹣S△OAB【点睛】考查切线的性质,圆周角定理,等腰直角三角形的判定与性质,含角的等腰直角三角形的性质,三角形的面积公式等,题目比较典型,综合性比较强,难度适中.21、(1);(2)k=-3【解析】
(1)依题意得△≥0,即[-2(k-1)]2-4k2≥0;(2)依题意x1+x2=2(k-1),x1·x2=k2以下分两种情况讨论:①当x1+x2≥0时,则有x1+x2=x1·x2-1,即2(k-1)=k2-1;②当x1+x2<0时,则有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1);【详解】解:(1)依题意得△≥0,即[-2(k-1)]2-4k2≥0解得(2)依题意x1+x2=2(k-1),x1·x2=k2以下分两种情况讨论:①当x1+x2≥0时,则有x1+x2=x1·x2-1,即2(k-1)=k2-1解得k1=k2=1∵∴k1=k2=1不合题意,舍去②当x1+x2<0时,则有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1)解得k1=1,k2=-3∵∴k=-3综合①、②可知k=-3【点睛】一元二次方程根与系数关系,根判别式.22、(1)7000辆;(2)a的值是1.【解析】
(1)设一月份该公司投入市场的自行车x辆,根据损坏率不低于10%,可得不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 钢铁厂建设钢筋工施工合同
- 高速公路服务区小青瓦施工协议
- 高铁绿化带改造承包合同
- 酒店建设硬装合同
- 垃圾处理供货施工合同范本
- 股份受让协议三篇
- 股票交易所行纪合同(2篇)
- 外场试验保密协议书
- 公司个人互赔协议书
- 土地出让合同中关于纳税额的约定
- 体验式家长会的实施与开展
- 《标准工时培训》课件
- 射击馆建设方案
- 应用写作-消息和通讯
- 华为公司客户满意度管理
- 四年级综合实践活动上三:学校中遵守规则情况调查教学课件
- 2023-2024学年江苏省淮安市数学高一上期末复习检测试题含解析
- 中学首席名师、名师、骨干教师、教坛新秀评选方案
- 国际物流运输管理智慧树知到课后章节答案2023年下上海海事大学
- 犯罪学智慧树知到课后章节答案2023年下山东警察学院
- 03K132 风管支吊架图集
评论
0/150
提交评论