版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省遵义市芭蕉中学2022年高一数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列各式中,值为
的是(
)
A.
B.
C.
D.参考答案:D2.已知,且,则的最小值为(
)A.
B.
C.
D.参考答案:D3.函数f(x)=sinxcosx+cos2x的最小正周期和振幅分别是()A.π,1 B.π,2 C.2π,1 D.2π,2参考答案:A【考点】GQ:两角和与差的正弦函数;GS:二倍角的正弦;GT:二倍角的余弦;H1:三角函数的周期性及其求法.【分析】f(x)解析式第一项利用二倍角的正弦函数公式化简,再利用两角和与差的正弦函数公式及特殊角的我三角函数值化为一个角的正弦函数,根据正弦函数的值域,确定出振幅,找出ω的值,求出函数的最小正周期即可.【解答】解:f(x)=sin2x+cos2x=sin(2x+),∵﹣1≤sin(2x+)≤1,∴振幅为1,∵ω=2,∴T=π.故选A4.若函数是幂函数,则的值为(
)A.
B.
C.
D.参考答案:A5.如果二次函数有两个不同的零点,则的取值范围是(
)A.
B.
C.
D.参考答案:
D
解析:或6.设数列是首项为50,公差为2的等差数列,是首项为10,公差为4的等差数列,以为相邻两边的矩形内的最大圆面积记为若则
(
)A.
B.
C.
D.参考答案:B7.下列集合与表示同一集合的是(
)A.
B. C.
D.
参考答案:D8.已知点和点,P是直线上的一点,则的最小值是(
)A. B. C. D.参考答案:D【分析】求出A关于直线l:的对称点为C,则BC即为所求【详解】如下图所示:点,关于直线l:的对称点为C(0,2),连接BC,此时的最小值为故选:D.【点睛】本题考查的知识点是两点间距离公式的应用,难度不大,属于中档题.9.过点(0,0)且倾斜角为60°的直线的方程是()A.x+y=0 B.x﹣y=0 C.x+y=0 D.x﹣y=0参考答案:B【考点】IB:直线的点斜式方程.【分析】利用点斜式即可得出.【解答】解:由题意可得直线方程为:y=xtan60°,即x﹣y=0.故选:B.【点评】本题考查了直线点斜式方程,考查了推理能力与计算能力,属于基础题.10.直线与直线,直线分别交于两点,中点为,则直线的斜率是(
)A.
B.
C.
D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.
参考答案:4。解析:由数表推得,每一行都是等差数列,第n行的公差为,记第n行的第m个数为,则算得答案为4。
12.已知函数f(x)=|2x﹣1|的图象与直线y=a有两个公共点,则a的取值范围是
.参考答案:(0,1)【考点】指数函数的图像变换.【专题】计算题;作图题.【分析】画出函数f(x)=|2x﹣1|的图象,根据图象即可得到函数f(x)=|2x﹣1|的图象与直线y=a有两个公共点时,a的取值范围.【解答】解:f(x)=|2x﹣1|的图象如下图所示:由图可知:当0<a<1时,函数f(x)=|2x﹣1|的图象与直线y=a有两个公共点,故答案为:(0,1)【点评】本题考查的知识点是指数函数的图象变换,其中根据指数函数的图象及函数图象的变换法则,得到函数f(x)=|2x﹣1|的图象,数形结合即可得到答案.13.满足{1,3}∪A={1,3,5}的集合A共有
个.参考答案:4【考点】并集及其运算.【分析】由已知得满足条件的集合A有:{5},{1,5},{3,5},{1,3,5}.【解答】解:∵{1,3}∪A={1,3,5},∴满足条件的集合A有:{5},{1,5},{3,5},{1,3,5},共4个.故答案为:4.14.给出下列四种说法:()函数与函数的定义域相同;()函数与的值域相同;()函数与均是奇函数;()函数与在上都是增函数.其中正确说法的序号是__________.参考答案:()()()中,函数和函数的定义域均为,故()正确;()中,函数的值域为,的值域为,故()错误;()中,,所以为奇函数,中,,也是奇函数,故()正确;()中,函数在上是减函数,在上是增函数,故()错误.综上所述,正确说法的序号是:()().15.关于x的方程|x2﹣1|=a有三个不等的实数解,则实数a的值是
.参考答案:1【考点】函数的零点与方程根的关系.【专题】数形结合.【分析】构造函数y1=|x2﹣1|,y2=a,画出函数的图形,即可得关于x的方程|x2﹣1|=a有三个不等的实数解时,a的值.【解答】解:构造函数y1=|x2﹣1|,y2=a,画出函数的图形,如图所示则可得关于x的方程|x2﹣1|=a有三个不等的实数解时,a=1故答案为:1【点评】本题考查方程的解,考查函数与方程思想,考查数形结合的数学思想,属于中档题.16.在△ABC中,角A,B,C的对边分别为a,b,c,且BC边上的高为,则的最大值为______.参考答案:【分析】利用三角形的面积计算公式得?a?bcsinA,求出a2=2bcsinA;利用余弦定理可得cosA,得b2+c2=a2+2bccosA,代入,化为三角函数求最值即可.【详解】因为S△ABC?a?bcsinA,即a2=2bcsinA;由余弦定理得cosA,所以b2+c2=a2+2bccosA=2bcsinA+2bccosA;代入得2sinA+2cosA=2sin(A),当A时,取得最大值为2.故答案为:2.【点睛】本题考查了三角形的面积计算公式、余弦定理、两角和差的正弦计算公式的应用问题,考查了推理能力与计算能力,是综合性题目.17.函数在上的单调减区间为_________。参考答案:
解析:令,必须找的增区间,画出的图象即可三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知等腰梯形PDCB中,PB=3,DC=1,PD=BC=,A为PB边上一点,且PA=1,将△PAD沿AD折起,使平面PAD⊥平面ABCD.(1)求证:平面PAD⊥平面PCD.(2)在线段PB上是否存在一点M,使截面AMC把几何体分成的两部分的体积之比为V多面体PDCMA:V三棱锥M﹣ACB=2:1?(3)在M满足(2)的条件下,判断PD是否平行于平面AMC.参考答案:【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【分析】(1)证明平面与平面垂直是要证明CD⊥面PAD;(2)已知V多面体PDCMA:V三棱锥M﹣ACB体积之比为2:1,求出VM﹣ACB:VP﹣ABCD体积之比,从而得出两多面体高之比,从而确定M点位置.(3)利用反证法证明当M为线段PB的中点时,直线PD与平面AMC不平行.【解答】解:(1)因为PDCB为等腰梯形,PB=3,DC=1,PA=1,则PA⊥AD,CD⊥AD.又因为面PAD⊥面ABCD,面PAD∩面ABCD=AD,CD?面ABCD,故CD⊥面PAD.又因为CD?面PCD,所以平面PAD⊥平面PCD.(2)所求的点M即为线段PB的中点,证明如下:设三棱锥M﹣ACB的高为h1,四棱锥P﹣ABCD的高为h2当M为线段PB的中点时,=.所以=所以截面AMC把几何体分成的两部分VPDCMA:VM﹣ACB=2:1.(3)当M为线段PB的中点时,直线PD与面AMC不平行.证明如下:(反证法)假设PD∥面AMC,连接DB交AC于点O,连接MO.因为PD?面PDB,且面AMC∩面PBD=MO,所以PD∥MO.因为M为线段PB的中点时,则O为线段BD的中点,即.面AB∥DC,故,故矛盾.所以假设不成立,故当M为线段PB的中点时,直线PD与平面AMC不平行.19.已知数列{an}中,,且(且).(1)求的值;(2)求通项公式an;(3)设数列{an}的前n项和为Sn,试比较Sn与的大小关系.参考答案:解:(1)
(2)∴∴∴(3)令则∴∴当时,当时∴当时当时.
20.已知,且,求、、的值。参考答案:解法二:∵①∴,即②,∴,又,∴,∴③,由①③得,∴,,∴。
21.已知二次函数,两个根之和为4,两根之积为3,且过点(2,-1).(1)求的解集;(2)当,试确定的最大值.参考答案:(1);(2).【分析】(1)先根据题中列方程组求出、、的值,可得出二次函数的解析式,然后再利用二次不等式的解法解不等式可得出解集;(2)考查与和的大小关系,利用函数的单调性得出函数在区间的最值。【详解】(1)由题意可得,解得,,解不等式,即,即,解得,因此,不等式的解集为;(2).①当时,函数在区间上单调递减,则;②当时,函数在区间上单调递减,在区间上单调递增,,,则;③当时,函数在区间上单调递减,在区间上单调递增,,,则.综上所述,.【点睛】本题考查二次不等式的解法,考查二次函数最值的求解,在求解二次函数在区间上的最值时,将对称轴与区间的位置关系进行分类讨论,结合单调性得出函数的最值,考查分类讨论数学思想,属于中等题。22.求经过直线L1:3x+4y–5=0与直线L2:2x–3y+8=0的交点M,且满足下列条件的直线方程(1)与直线2x+y+5=0平行;(2)与直线2x+y+5=0垂直;参考答案:(1);(2)。试题分析:先通过两直线方程联立解方程组求出交点坐标.(1)根据两直线平行,斜率相等,设出所求直线方程,将交点坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度别墅项目推广合作合同2篇
- 二手手机转让协议书(2024版)3篇
- 2024年度砂石料供货及运输合同范本2篇
- 2024年度货物供应合同协议及质量要求说明2篇
- 2024年度机械制造用钢材订购合同5篇
- 2024年度保险合同标的商铺租赁保险责任的认定与赔偿2篇
- 2024年高纯金属及氧化物项目资金需求报告
- 2024年度农业技术与农产品采购合同3篇
- 二零二四年度建筑项目设计与施工总承包合同2篇
- 2024年度融资租赁合同:飞机租赁及购买协议3篇
- 我国机电产品出口的优势与问题
- 市政工程技术专业分析报告(共18页)
- 精益管理推行工作考评细则
- 养成好习惯教案
- 放射科质控总结
- 如何提取关键词
- 村集体经济组织年度财务收支预算表
- 案例思念休闲吧
- SBAR标准化沟通
- 正确认识疼痛ppt课件
- 2019年脚手架门式安全技术规范JGJ128-2010
评论
0/150
提交评论