版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学教案(6篇)高中数学教案篇一教学目标:(1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化。(2)理解直线与二元一次方程的关系及其证明(3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点。教学重点、难点:直线方程的一般式。直线与二元一次方程(、不同时为0)的对应关系及其证明。教学用具:计算机教学方法:启发引导法,讨论法教学过程:下面给出教学实施过程设计的简要思路:教学设计思路:(一)引入的设计前边学习了如何根据所给条件求出直线方程的方法,看下面问题:问:说出过点(2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?答:直线方程是,属于二元一次方程,因为未知数有两个,它们的最高次数为一次。肯定学生回答,并纠正学生中不规范的表述。再看一个问题:问:求出过点,的直线的方程,并观察方程属于哪一类,为什么?答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次。肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”。启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论。学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:【问题1】“任意直线的方程都是二元一次方程吗?”(二)本节主体内容教学的设计这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路。学生或独立研究,或合作研究,教师巡视指导。经过一定时间的研究,教师组织开展集体讨论。首先让学生陈述解决思路或解决方案:思路一:…思路二:………教师组织评价,确定最优方案(其它待课下研究)如下:按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在。当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程。当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。综合两种情况,我们得出如下结论:在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于、的二元一次方程。至此,我们的问题1就解决了。简单点说就是:直线方程都是二元一次方程。而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要么形如这样的方程”。同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?学生们不难得出:二者可以概括为统一的形式。这样上边的结论可以表述如下:在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程。启发:任何一条直线都有这种形式的方程。你是否觉得还有什么与之相关的问题呢?【问题2】任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面。这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论。那么如何研究呢?师生共同讨论,评价不同思路,达成共识:回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程(其中、不同时为0)系数是否为0恰好对应斜率是否存在,即(1)当时,方程可化为这是表示斜率为、在轴上的截距为的直线。(2)当时,由于、不同时为0,必有,方程可化为这表示一条与轴垂直的直线。因此,得到结论:在平面直角坐标系中,任何形如(其中、不同时为0)的二元一次方程都表示一条直线。为方便,我们把(其中、不同时为0)称作直线方程的一般式是合理的。【动画演示】演示“直线各参数”文件,体会任何二元一次方程都表示一条直线。至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系。(三)练习巩固、总结提高、板书和作业等环节的设计略高中数学教案篇二教学目标(1)使学生正确理解组合的意义,正确区分排列、组合问题;(2)使学生掌握组合数的计算公式;(3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;教学重点难点重点是组合的定义、组合数及组合数的公式;难点是解组合的应用题。教学过程设计(-)导入新课(教师活动)提出下列思考问题,打出字幕。[字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?(学生活动)讨论并回答。答案提示:(1)排列;(2)组合。[评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题。这节课着重研究组合问题。设计意图:组合与排列所研究的问题几乎是平行的。上面设计的问题目的是从排列知识中发现并提出新的问题。(二)新课讲授[提出问题创设情境](教师活动)指导学生带着问题阅读课文。[字幕]1.排列的定义是什么?2.举例说明一个组合是什么?3.一个组合与一个排列有何区别?(学生活动)阅读回答。(教师活动)对照课文,逐一评析。设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境。【归纳概括建立新知】(教师活动)承接上述问题的回答,展示下面知识。[字幕]模型:从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合。如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合。组合数:从个不同元素中取出个元素的所有组合的个数,称之,用符号表示,如从6个元素中取出2个元素的组合数为.[评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题。(学生活动)倾听、思索、记录。(教师活动)提出思考问题。[投影]与的关系如何?(师生活动)共同探讨。求从个不同元素中取出个元素的排列数,可分为以下两步:第1步,先求出从这个不同元素中取出个元素的组合数为;第2步,求每一个组合中个元素的全排列数为.根据分步计数原理,得到[字幕]公式1:公式2:(学生活动)验算,即一条铁路上6个火车站有15种不同的票价的普通客车票。设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去。(三)小结(师生活动)共同小结。本节主要内容有1.组合概念。2.组合数计算的两个公式。(四)布置作业1.课本作业:习题103第1(1)、(4),3题。2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?3.研究性题:在的边上除顶点外有5个点,在边上有4个点,由这些点(包括)能组成多少个四边形?能组成多少个三角形?(五)课后点评在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力。作业参考答案2.解;设有男同学人,则有女同学人,依题意有,由此解得或或2.即男同学有5人或6人,女同学相应为3人或2人。3.能组成(注意不能用点为顶点)个四边形,个三角形。探究活动同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,那么四张不同的分配万式可有多少种?解设四人分别为甲、乙、丙、丁,可从多种角度来解。解法一可将拿贺卡的情况,按甲分别拿乙、丙、丁制作的贺卡的情形分为三类,即:甲拿乙制作的贺卡时,则贺卡有3种分配方法。甲拿丙制作的贺卡时,则贺卡有3种分配方法。甲拿丁制作的贺卡时,则贺卡有3种分配方法。由加法原理得,贺卡分配方法有3+3+3=9种。解法二可从利用排列数和组合数公式角度来考虑。这时还存在正向与逆向两种思考途径。正向思考,即从满足题设条件出发,分步完成分配。先可由甲从乙、丙、丁制作的贺卡中选取1张,有种取法,剩下的乙、丙、丁中所制作贺卡被甲取走后可在剩下的3张贺卡中选取1张,也有种,最后剩下2人可选取的贺卡即是这2人所制作的贺卡,其取法只有互取对方制作贺卡1种取法。根据乘法原理,贺卡的分配方法有(种).逆向思考,即从4人取4张不同贺卡的所有取法中排除不满足题设条件的取法。不满足题设条件的取法为,其中只有1人取自己制作的贺卡,其中有2人取自己制作的贺卡,其中有3人取自己制作的贺卡(此时即为4人均拿自己制作的贺卡).其取法分别为1.故符合题设要求的取法共有(种).高中数学教案下载篇三一、导入新课,探究标准方程二、掌握知识,巩固练习练习:1、说出下列圆的方程⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为32、指出下列圆的圆心和半径⑴(x-2)2+(y+3)2=3⑵x2+y2=2⑶x2+y2-6x+4y+12=03、判断3x-4y-10=0和x2+y2=4的位置关系4、圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程三、引伸提高,讲解例题例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)练习:1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。2、某圆过A(-10,0)、B(10,0)、C(0,4),求圆的方程。例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)四、小结练习P771,2,3,4五、作业P811,2,3,4高中数学教案篇四教学目标1.了解映射的概念,象与原象的概念,和一一映射的概念。(1)明确映射是特殊的对应即由集合,集合和对应法则f三者构成的一个整体,知道映射的特殊之处在于必须是多对一和一对一的对应;(2)能准确使用数学符号表示映射,把握映射与一一映射的区别;(3)会求给定映射的指定元素的象与原象,了解求象与原象的方法。2.在概念形成过程中,培养学生的观察,比较和归纳的能力。3.通过映射概念的学习,逐步提高学生对知识的探究能力。教学建议教材分析(1)知识结构映射是一种特殊的对应,一一映射又是一种特殊的映射,而且函数也是特殊的映射,它们之间的关系可以通过下图表示出来,如图:由此我们可从集合的包含关系中帮助我们把握相关概念间的区别与联系。(2)重点,难点分析本节的教学重点和难点是映射和一一映射概念的形成与认识。①映射的概念是比较抽象的概念,它是在初中所学对应的基础上发展而来。教学中应特别强调对应集合B中的唯一这点要求的理解;映射是学生在初中所学的对应的基础上学习的,对应本身就是由三部分构成的整体,包括集合A和集合B及对应法则f,由于法则的不同,对应可分为一对一,多对一,一对多和多对多。其中只有一对一和多对一的能构成映射,由此可以看到映射必是“对B中之唯一”,而只要是对应就必须保证让A中之任一与B中元素相对应,所以满足一对一和多对一的对应就能体现出“任一对唯一”。②而一一映射又在映射的基础上增加新的要求,决定了它在学习中是比较困难的。教法建议(1)在映射概念引入时,可先从学生熟悉的对应入手,选择一些具体的生活例子,然后再举一些数学例子,分为一对多、多对一、多对一、一对一四种情况,让学生认真观察,比较,再引导学生发现其中一对一和多对一的对应是映射,逐步归纳概括出映射的基本特征,让学生的认识从感性认识到理性认识。(2)在刚开始学习映射时,为了能让学生看清映射的构成,可以选择用图形表示映射,在集合的选择上可选择能用列举法表示的有限集,法则尽量用语言描述,这样的表示方法让学生可以比较直观的认识映射,而后再选择用抽象的数学符号表示映射,比如:(3)对于学生层次较高的学校可以在给出定义后让学生根据自己的理解举出映射的例子,教师也给出一些映射的例子,让学生从中发现映射的特点,并用自己的语言描述出来,最后教师加以概括,再从中引出一一映射概念;对于学生层次较低的学校,则可以由教师给出一些例子让学生观察,教师引导学生发现映射的特点,一起概括。最后再让学生举例,并逐步增加要求向一一映射靠拢,引出一一映射概念。(4)关于求象和原象的问题,应在计算的过程中总结方法,特别是求原象的方法是解方程或方程组,还可以通过方程组解的不同情况(有唯一解,无解或有无数解)加深对映射的认识。(5)在教学方法上可以采用启发,讨论的形式,让学生在实例中去观察,比较,启发学生寻找共性,共同讨论映射的特点,共同举例,计算,最后进行小结,教师要起到点拨和深化的作用。教学设计方案2.1映射教学目标(1)了解映射的概念,象与原象及一一映射的概念。(2)在概念形成过程中,培养学生的观察,分析对比,归纳的能力。(3)通过映射概念的学习,逐步提高学生的探究能力。教学重点难点::映射概念的形成与认识。教学用具:实物投影仪教学方法:启发讨论式教学过程:一、引入在初中,我们已经初步探讨了函数的定义并研究了几类简单的常见函数。在高中,将利用前面集合有关知识,利用映射的观点给出函数的定义。那么映射是什么呢?这就是我们今天要详细的概念。二、新课在前一章集合的初步知识中,我们学习了元素与集合及集合与集合之间的关系,而映射是重点研究两个集合的元素与元素之间的对应关系。这要先从我们熟悉的对应说起(用投影仪打出一些对应关系,共6个)我们今天要研究的是一类特殊的对应,特殊在什么地方呢?提问1:在这些对应中有哪些是让A中元素就对应B中唯一一个元素?让学生仔细观察后由学生回答,对有争议的,或漏选,多选的可详细说明理由进行讨论。最后得出(1),(2),(5),(6)是符合条件的(用投影仪将这几个集中在一起)提问2:能用自己的语言描述一下这几个对应的共性吗?经过师生共同推敲,将映射的定义引出。(主体内容由学生完成,教师做必要的补充)高中数学教案篇五[核心必知]1、预习教材,问题导入根据以下提纲,预习教材P6~P9,回答下列问题、(1)常见的程序框有哪些?提示:终端框(起止框),输入、输出框,处理框,判断框、(2)算法的基本逻辑结构有哪些?提示:顺序结构、条件结构和循环结构、2、归纳总结,核心必记(1)程序框图程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形、在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序、(2)常见的程序框、流程线及各自表示的功能图形符号名称功能终端框(起止框)表示一个算法的起始和结束输入、输出框表示一个算法输入和输出的信息处理框(执行框)赋值、计算判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”流程线连接程序框○连接点连接程序框图的两部分(3)算法的基本逻辑结构①算法的三种基本逻辑结构算法的三种基本逻辑结构为顺序结构、条件结构和循环结构,尽管算法千差万别,但都是由这三种基本逻辑结构构成的②顺序结构顺序结构是由若干个依次执行的步骤组成的这是任何一个算法都离不开的基本结构,用程序框图表示为:[问题思考](1)一个完整的程序框图一定是以起止框开始,同时又以起止框表示结束吗?提示:由程序框图的概念可知一个完整的程序框图一定是以起止框开始,同时又以起止框表示结束、(2)顺序结构是任何算法都离不开的基本结构吗?提示:根据算法基本逻辑结构可知顺序结构是任何算法都离不开的基本结构、[课前反思]通过以上预习,必须掌握的几个知识点:(1)程序框图的概念:(2)常见的程序框、流程线及各自表示的功能:(3)算法的三种基本逻辑结构:(4)顺序结构的概念及其程序框图的表示:问题背景:计算1×2+3×4+5×6+…+99×100。[思考1]能否设计一个算法,计算这个式子的值。提示:能。[思考2]能否采用更简洁的方式表述上述算法过程。提示:能,利用程序框图。[思考3]画程序框图时应遵循怎样的规则?名师指津:(1)使用标准的框图符号。(2)框图一般按从上到下、从左到右的方向画。(3)除判断框外,其他程序框图的符号只有一个进入点和一个退出点,判断框是一个具有超过一个退出点的程序框。(4)在图形符号内描述的语言要非常简练清楚。(5)流程线不要忘记画箭头,因为它是反映流程执行先后次序的,如果不画出箭头就难以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 英文微课程设计讲解
- 物流行业设计师工作总结
- 全球石油库存数据透明度报告(英文版)
- 美食店服务员的服务感悟
- 服装定制行业裁板师培训心得
- 【八年级下册历史】单元测试 第五、六单元测试题
- 2024年设备监理师考试题库附参考答案【基础题】
- 2024年计算机网络实习心得体会
- 2024年给图形做标记教案
- 2024年煤矿安全质量标准化标准
- 2024年中国干粉涂料市场调查研究报告
- 2024年副班主任工作总结(3篇)
- 课题申报书:古滇青铜文化基因图谱构建及活态深化研究
- 2024年城乡学校结对帮扶工作总结范例(3篇)
- 房地产法律风险防范手册
- 《监考人员培训》课件
- 期末综合测试卷(试题)-2024-2025学年四年级上册数学人教版
- 分布式光伏发电项目计划书
- 2024-2025学年广东省肇庆鼎湖中学高三上学期9月考试英语试题(含答案)
- 专题3-6 双曲线的离心率与常用二级结论【12类题型】(原卷版)-A4
- 黑龙江省哈尔滨市2023-2024学年七年级上学期期末统考学业水平调研测试语文试卷(解析版)
评论
0/150
提交评论