




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
McDaniel&Gates–MarketingResearch,12thEdition Instructor’sManual
Copyright©2021JohnWiley&Sons,Inc. 10-
CHAPTER10
MarketingAnalytics
LEARNINGOBJECTIVES
1.Understandwhat’sincludedinmarketinganalytics.
2.Reviewtechniquesforanalyzingdata.
3.Gainagreaterunderstandingofbigdata.
4.Exploredatamining.
5.Understanddifferencesinanalyticalforbigandlittledata.
6.Defineartificialintelligence,machinelearninganddeeplearning.
7.Outlinethekeyissuesregardingconsumerprivacy.
KEYTERMS
ArtificialintelligenceorAI
Backpropagation
Behavioraltargeting
Bigdata
CRISP-DMFramework
Datamining
Datavisualization
Deeplearning
Descriptiveanalytics
Machinelearning
Marketinganalytics
Marketingdashboard
Neuralnetworks
Predictiveanalytics
Prescriptiveanalytics
Surgepricing
CHAPTERSUMMARY
Thischapterwilllookatsomeofthetoolsthatenableresearcherstoanalyzeandgaininsightsfromalltypesofdata.Itbeginswithadiscussionofmarketinganalytics,whatitisandwhattheprocessis.Next,itdiscussesbigdata.Thisincludesitsbackground,howitworks,andnowtoanalyzeit.
Next,itdiscussesdescriptive,predictive,andprescriptiveanalytics.Afterthat,itdiscussesdatamining,artificialintelligence,machinelearning,anddeeplearning.Thechapterthistransitionsintobehavioraltargetingandsurgepricing.Next,itdiscussesdatavisualization.Aspartofthatdiscussion,itcoversinfographicsandmarketingdashboards.Itconcludeswithadiscussionofprivacyissues.
QUESTIONSFORREVIEWANDCRITICALTHINKING
Definemarketinganalytics.Whyisitsoimportanttocompanies?
AsdefinedinChapter1,marketinganalyticsisthediscovery,interpretation,andcommunicationofmeaningfulpatternsindata.Thisboilsdowntopredictionorclassificationandtheassociatedinsights.
Marketinganalyticsisimportantbecausecompanieshavetounderstandtheirmarketsinordertoproduceproductsorservicesthataredemandedbytheirmarketsandinordertobeabletorespondtochangesintheirmarket.
Namesometypesofinformationthatmightbefoundinanycompany’sdatabaseandthesourcesofthisinformation.
Anyinformationthefirmcollectsfromitscustomers,suppliers,andothersourcesislikelystoredintheirdatabase.Forexample,Visa,MasterCard,AmericanExpressandothershavemassivedatabaseswhereawiderangeofpurchasesfromretailstores,restaurants,hotels,airlines,onlineretailers,serviceorganizationsandsooncanbeassociatedwithspecificpurchasersaboutwhomthecreditcardcompanieshaveagreatdealofpersonalinformationcoveringage,gender,income,occupation,placeofresidence,andalltheotherinformationyouprovidewhenyoufilloutacreditcardapplication.
Whatismeantbythetermdatamining?Brieflyexplainhowitisdone.
Dataminingisanumbrellatermforanalytictechniquesthatfacilitatefastpatterndiscoveryandmodelbuilding,particularlywithlargedatasets.Thetermislooselyappliedtoanytypeoflarge-scaledataorinformationprocessingaswellasanyapplicationofartificialintelligence,machinelearning,ordeeplearning.Dataminingisperformedusingartificialintelligence,machinelearning,anddeeplearning.
IthasbeensaidthatBigDataanalyticsturnsthescientificmethodonitshead.Whatdoesthismean?
Thescientificmethodisatypeofresearchwhereaproblemisdescribed,relevantdataiscollected,aresearchhypothesis(orhypotheses)isformulated,andthenthehypothesisistestedempirically.Withbigdata,thedataiscollectedfirstandthenanalyzedtofind,notreallyhypotheses,butrathertofindanswerstoquestions.
Whyhasbehavioraltargetingbecomesopopularwithmarketers?Whyisitcontroversial?
Behavioraltargetingistheuseofonlineandofflinedatatounderstandaconsumer’shabits,demographics,andsocialnetworksinordertoincreasetheeffectivenessofonlineadvertising.Thisallowscompaniestoimprovetheirabilitytomarkettotheircustomers.Forexample,Amazonmakingrecommendationstoitscustomers.Behavioraltargetingiscontroversialbecauseoftheprivacyimplicationsandthewayssomeofthedataiscollectedonline.
Whatisdeeplearning?Howisitdifferentfrommachinelearning?HowdotheserelatetoAI?
Machinelearningiswheremachinescanlearnbyexperienceandacquireskillswithouthumaninvolvement.Deeplearningisasubsetofmachinelearningwhereartificialneuralnetworks,algorithmsinspiredbythehumanbrain,learnfromlargeamountsofdataasinmachinelearningbutnowweaddbackpropagationwheremachineslearnfromtheirmistakes.
Bothmachineanddeeplearningareimplementationsofartificialintelligence,wherewecanteachmachinestodothingsthattypicallyrequirehumanintelligence.
Inconnectionwithdeeplearning,whatisbackpropagation?
BackpropagationiswherethedeeplearningAIrealizesithasmadeanerrorandmakesadjustmenttoimprovepredictions.
Whatisdatavisualization?Whyisitimportant?
Datavisualizationconsistsofgraphictoolsthatmakedataunderstandabletoawideraudiencethanjustanalystsanddatascientists.Datavisualizationisimportantbecausehumansunderstanddatamuchquickerandbettervisuallythanbylookingatnumbers.
Whatisamarketingdashboard?Howcanitbeused?
Marketingdashboardsareareportingtoolthatprovidesacomprehensivesnapshotofperformance-basedanalytics,keyperformanceindicators(KPIs),andothermarketingmetrics.Itcanbeusedtovisuallypresentanymarketinginformationcollectedbythefirm.
Dividetheclassintogroupsoffourorfive.EachteamshouldgototheInternetandlookupBigDataanalytics.EachteamshouldthenreporttotheclassonhowaspecificcompanyiseffectivelyusingBigDatatoimprovetheirmarketingefficiency.
Studentresponseswillvary.
REAL-LIFERESEARCH
Case10.1AffiliatedParkingSystemsLookstoNewPricingApproach
KeyPoints
APSownsandoperatesover300parkinglotswithslightlyover33,000parkingplaces.
APShasbeenstruggling,searchingfornewideastoincreaserevenuesfromexistinglots.
APSiswonderingifsurgepricingcouldhelpthem.
APSisinterestedindoingallfeecollectionfromtotallyelectronicallytofurtherreducevariablecosts.
APSwantstovarypricingbasedonthelevelofdemandforparkinginrealtime.
Questions
WouldyousaythatBillisontherighttrackregardingtheneedforartificialintelligencetoimplementdynamicpricing?Whydoyousaythat?
Studentopinionswillvary.However,withafixedinventoryofparkingspaces,dynamicpricingoffersabouttheonlyoptiontheyhaveforincreasingrevenue.
Ifheweretopursuetheideafurther(heobviouslywouldneedhelpfromaconsultingfirm),whatdatawouldbeneededtoimplementsurgeordynamicpricing?
Sincetheyown300parkinglots,thisistheperfectopportunitytopilottest(e.g.testmarket)theconceptifthatisdesired.
Inordertoimplementsurgepricing,theywouldneedtoknowhowdemandvarieswithtime-of-day,day-of-week,andspecialevents.Theycouldbeginbycollectingdemandfromtheelectronicsystemsandattendants.Somelotshavemanualsystemsandthesewouldbeincompatiblewithbothdatacollectionandsurgepricingsotheywouldneedtobeupgradedforthesystemtowork.
Wouldmodelsbeneeded?Whatwouldthemodelsdo?Howmighttheybedeveloped?
Machinelearningwouldberequiredtomodeldemandandadjustpricingonanongoingbases,raisingpriceswithspacesareinhighdemandandloweringpriceswhenspacesareinlowdemand.
Describetheultimatesystemthatwouldbeneededintermsofinputsneeded,howthoseinputswouldbecaptured,modelsneeded(justageneralsenseofwhatthemodelswouldneedtodo),howpricingwouldbecommunicatedtoperspectiveusersandhowfeeswouldbecollected.Mappingitalloutinadiagramwithafewcommentsonwhatisoccurringateachstepisprobablyagoodapproachtoansweringthisquestion.
WhilethisinitiallysoundssimilartosurgepricingwithUber,itisactuallyverydifferent.WithUber,youagreeonthepriceaheado
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 转让店铺欠款协议书
- 茶叶代销合作协议书
- 钢管扣件保管协议书
- 运维改造合同协议书
- 阅文合同霸王协议书
- 驻场开发保密协议书
- 酒店入股经营协议书
- 修脚店合伙开店协议书
- 养鸡合伙人合同协议书
- 菜园开荒租赁协议书
- 六、回顾整理-总复习2.图形的认识与测量(二)-平面图形的周长和面积(课件)青岛版六年级下册数学
- 中医养生(灵源万应茶)
- 追索子女抚养费起诉状
- 六年级数学质量分析PPT
- 土地平整、池塘推土、杂草灌木丛及树木清除施工方案
- 眼镜镜架的整形专业培训2课件
- 下线仪式串词策划
- 通用长期供销合同范本
- 《社区治理研究国内外文献综述(1900字)》
- 2023浙江省学生艺术特长测试A级理论复习资料
- 建筑业企业资质职称人员相近专业认定目录
评论
0/150
提交评论