版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
MANY-OBJECTIVEPARTICLESWARMOPTIMIZATIONBASEDONPARALLELCELLCOORDINATESYSTEMGaryG.Yen,Ph.D.,FIEEE,FIETProfessor,OklahomaStateUniversityPastPresident,IEEEComputationalIntelligenceSocietyFoundingEditor-in-Chief,IEEEComputationalIntelligenceMagazine
PaperSubmissionDeadline:December20,2013July24-29,2016MultiobjectiveOptimization
OptimizationproblemsinvolvemorethanoneobjectivefunctionVerycommon,yetdifficultproblemsinthefieldofscience,engineering,andbusinessmanagementNonconflictingobjectives:achieveasingleoptimalsolution satisfiesallobjectivessimultaneouslySOPsCompetingobjectives:cannotbeoptimizedsimultaneouslyMOP–searchforasetof“acceptable”–maybeonlysuboptimalforoneobjective–solutionsisourgoalInoperationresearch/managementterms–multiplecriteriondecisionmaking(MCDM)WhyMOP?BuyinganAutomobileObjective=reducecost,whilemaximizecomfortWhichsolution(1,A,B,C,2)isbest???NosolutionfromthissetmakesbothobjectiveslookbetterthananyothersolutionfromthesetNosingleoptimalsolutionTradeoffbetweenconflictingobjectives-costandcomfortMathematicalDefinitionMathematicalmodeltoformulatetheoptimizationproblem
DesignVariables:decisionandobjectivevectorConstraints:equalityandinequalityGreater-than-equal-toinequalityconstraintcanbeconvertedtoless-than-equal-toconstraintbymultiplying-1ObjectiveFunction:maximizationcanbeconvertedtominimizationduetothedualityprincipleObjectivevectorsDecisionvectorsEqualityconstraintsInequalityconstraintsVariableboundsEnvironmentstatesParetoOptimalityFormalDefinition:theminimizationofthencomponents
ofavectorfunctionfofavectorvariablexinauniverse,whereThenadecisionvectorissaidtobePareto-optimalifand onlyifthereisnoforwhich dominates,thatis,thereisnosuchthatNondominatedset(Paretofront)f1f2objectivespaceABCParetoOptimalSet–thesetofallPareto-optimaldecisionvectors,whichyieldsasetofnondominatedsolutionsNon-dominatedSet–correspondingobjectivevectorset-ParetoFrontx2x1ParetooptimalsetABCdecisionspaceDZDTTestSuiteAnunorthodox,stochastic,andpopulationbasedparallelsearchingheuristicsmaybemoresuitableforMOPsClassificationofEA’s–GeneticAlgorithm;GeneticProgramming;EvolutionaryProgramming;EvolutionaryStrategy;AntColony;ArtificialImmuneSystem;ParticleSwarmOptimization;DifferentialEvolution;MemeticAlgorithmWhyPopulation-BasedHeuristics?abilityofhandlingcomplexproblemswithdiscontinuities,multimodality,disjointfeasiblespacesanddynamismResearchIssuesforMOPsModifyingthefitnessassignmentEnhancingtheconvergencePreservingthediversityManagingthepopulationConstraintsanduncertaintyhandlingProgressionsofdevelopmentinEMOcommunity-
fromevolutionary&nature-inspiredcomputationalmetaphors,
tosolvingsingle-objective
optimizationproblems,
tosolvingconstrained
optimizationproblems,
tosolvingdynamic
optimizationproblems,
tosolvingmulti-objectiveoptimizationproblems,
andtosolvingnowMany-ObjectiveOptimizationProblems.Multi-ObjectiveOptimizationProblems(MOPs)withalargenumberofobjectives(ingeneraloverfive)arereferredtoasMaOPs.
ProgressioninEMODevelopmentsWhenencounterproblemswithmanyobjectives(morethanfive),nearlyallalgorithmsperformspoorlybecauseoflossofselectionpressureinfitnessevaluationsolelybaseduponParetodomination.Withtheincreasingnumberofobjectives,thereareafewchallengestobeaddressed:IneffectivedefinitioninthePareto-dominancedeterioratestheconvergenceabilityofMOEAsAnexponentiallylargenumberofsolutionsarerequiredtoapproximatethewholeParetofrontInbalanceofcomputationalcomplexityandqualityofthesolutionfoundVisualizationofalarge-dimensionalfrontisreallydifficultMetricstoquantifytheperformanceofthedesignsResearchIssuesforMaOPsObjectiveReductionNon-Pareto-BasedTechniquesIncorporationofPreferenceInformationGradientInformationModificationsofMOEAsforMaOPsParetoDominationRevisionsDominanceAreaControl,ɛ-Dominance,k-Optimality,GridDominance,Fuzzy-basedParetoDominanceFD-NSGA-II,FD-SPEA2(He&Yen,TEVC,2013)DecompositionMethodsMOEA/D(Zhang&Li,TEVC,2007);NSGA-III(Deb&Jain,TEVC,2013)GridBasedApproachesTDEA(Pierroetal.,TEVC,2007);e-MOEA(Debetal.,EvolComput,2005);GrEA(Yangetal.,TEVC,2013)IndicatorBasedMethodsSMS-EMOA(Beumeetal.,EJOperResearch;2007)HypE(Bader&Zitzler,EvolComput.,2011)State-of-the-ArtMaOEAsInPSOside…Meta-heuristicallyinspiredbythesocialbehaviorofbirdflockingorfishschooling,therelativesimplicityandthesuccessasasingle-objectiveoptimizerhavemotivatedresearcherstoextendPSOfromSOPstoMOPs.However,apartfromthecommonissueinMOEAstomaintainanarchive,therearetwoparticularissuesinMOPSO:ManagingconvergenceanddiversityfastconvergenceofPSOincursarapidlossofdiversityduringtheevolutionaryprocessSelectingglobalbest(gBest)andpersonalbest(pBest)thereisnoabsolutebestsolutionbutratherasetofnon-dominatedsolutions.ManymechanismswereproposedintheexistingMOPSOsintermofleaderselection,archivemaintenance,andperturbationtotackletheseissues.However,fewMOPSOsaredesignedtodynamicallyadjustthebalanceinexplorationandexploitationaccordingtothefeedbackinformationthroughinteractingtheevolutionaryenvironment.ThechallengesinMOPSOformanagingtheconvergenceanddiversity:updatingarchiveselectinggBestandpBestSelf-adaptingflightparametersperturbingstagnationMotivationsAmechanism(differentfromgrid-basedapproaches)for:assessingdiversitytoselectglobalbestforaparticleandupdatearchiveevaluatingtheevolutionaryenvironmenttodynamicallyadjusttheevolutionarystrategiesParallelcoordinates
isa
popularwayofvisualizing
high-dimensionalgeometry
andanalyzingmultivariate
data.Transformamulti-objective
spaceintoa2-Dgridto
evaluatethedistribution
ofanapproximateParetofrontParallelCellCoordinateSystemMaptheindividualsinglobalarchivefromCartesianCoordinateSystemintoParallelCellCoordinateSystem(PCCS)KbyMcellsKnon-dominatedindividualsinM-objectivespaceestimatingdensitytoupdatearchiveandselectdiversitygBest(d_gBest)withminimaldensityThedistancebetweentwovectors,namedParallelCellDistance,ismeasuredbythesumofnumbersofcellsawayfromeachotherinallobjectives.ThedensityofPi,inthehyperspaceformedbythearchivecanbemeasuredbytheParallelCellDistancebetweenPiandallothermembers,Pj(j=1,2,…,K,j≠i),inthearchive.rankingnon-dominatedsolutionsinarchiveforselectingconvergencegBest(c_gBest),withminimalpotential.c_gBestThepotentialquantifiesanon-dominatedsolutionamongitscompetitorsinthearchivebycombiningtheorderrelationalongtheoptimizationdirectionandthedegreeintheunitofcellinPCCS.DetectingtheEvolutionaryEnvironmentbyEntropyAbruptchangesindicateaconvergencestatusbecauseanewsolutiondominatessomeoldsolutionsinarchiveandthepopulationmakesaprogressorbreaksthroughalocalParetofront.Mildchangesindicateadiversitystatusbecauseanewsolutionwithbetterdensityreplacesanoldsolutioninarchive.Nochangeindicatesastagnationstatus.CurvesofEntropyandΔEntropydetectedfromZDT4withmanylocalParetofronts.ProposedpccsAMOPSOUpdatingarchiveComplexity:O(ML2)M:thenumberofobjectivesL:thenumberofMembersinarchiveSelectinggBestLeaderGroupMc_gBests&Md_gBeststhetypeofcandidatesbetweenc-gBestandd-gBestisdecidedinprobabilityacandidateforaparticleisrandomlydrawnfromthechosentypeofgBestAcandidateisrandomlydrawnfromthechosentypeThethresholdisthemaximalprobablevariationofentropy.SelectingpBestfrompArchivepArchivewithaquarterboundedsizeofgArchivetodecreasethecostofpArchivemaintenancepBestisselectedaccordingtotheminimalhyperbox:Self-AdaptivePSOflight-Anexampleofself-adaptiveparametersobtainedbypccsAMOPSOforZDT4withmanylocalParetofrontsPerturbingaparticletoacceleratetheconvergenceorescapefromlocalParetofrontsElitismLearningStrategy[fromZ.H.Zhan,J.Zhang,Y.Li,andH.S.Chung,“Adaptiveparticleswarmoptimization,”IEEETrans.Syst.Man,Cybern.B,Cybern.,vol.39,no.6,pp.1362-1381,Dec.2009.]RandomlyperturbadimensionofgBestPerturbationrangeisdampedbyaGaussianfunction,G(0,lr2)learningrate,lr,islinearlydecreasedfrom1.0downto0.1.TheintegratedalgorithmofpccsAMOPSOpccsAMOPSOforDTLZ2(3)ExperimentPeeralgorithmssigmaMOSPO:SigmavaluemethodbyMostaghimandTeich,2003agMOPSO:adaptivegridbyPadhye,2009cdMOPSO:crowdingdistancebyCoello,PulidoandLechuga,2004clusterMOPSO:clusteringpopulationbyMostaghimandTeich,2003pdMOPSO:ROUND+RAND+PROBbyAlvarez-Ben’itez.EversonandFieldsend,2005TestinstancesZTDseries(2-objective):fiveinstancesDTLZseries(3-objective):seveninstancesMetric:IGD&HyperVolume(HV)referencepointat11ineachobjectiveforHVHypervolume1-pccsAMOPSO2-sigmaMOPSO3-agMOPSO4-cdMOPSO5-clusterPOPSO6-pdMOPSO1-pccsAMOPSO2-sigmaMOPSO3-agMOPSO4-cdMOPSO5-clusterPOPSO6-pdMOPSOScoresofMeriton12testinstancesforHVProposedMOPSOsigmaMOPSOagMOPSOcdMOPSOclusterMOPSOpdMOPSONSGA-IISPEA2MOE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 财务职业发展规划
- 【辽海版】《综合实践活动》九年级上册8.1 信息生活初体验
- 景观设计与规划
- 公积金财务报告审计要点
- 皮革制品公司员工宿舍管理规定
- 飞机场施工合同填写范文
- 美食节活动摄影师聘用合同
- 商业中心定额计价施工合同
- 国际文化交流中心
- 商业地产运营规范
- 《化肥与种植业生产》课件
- 护理值班与交班制度
- 第15课《做个讲公德的孩子》(课件)心理健康二年级上册北师大版
- 高职班家长会
- 机械CAD、CAM-形考任务三-国开-参考资料
- 2024年幼儿园卫生保健工作总结(6篇)
- 女性生殖健康研究
- 变压器投标书-技术部分
- 第二讲 七十五载迎盛世 砥砺前行续华章2024年形势与政策(课件)
- 丝绸之路上的民族学习通超星期末考试答案章节答案2024年
- 医疗质量和医疗安全培训
评论
0/150
提交评论