2021-2022学年云南省临沧市名校中考数学最后冲刺模拟试卷含解析_第1页
2021-2022学年云南省临沧市名校中考数学最后冲刺模拟试卷含解析_第2页
2021-2022学年云南省临沧市名校中考数学最后冲刺模拟试卷含解析_第3页
2021-2022学年云南省临沧市名校中考数学最后冲刺模拟试卷含解析_第4页
2021-2022学年云南省临沧市名校中考数学最后冲刺模拟试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022学年云南省临沧市名校中考数学最后冲刺模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是()A.0.69×10﹣6 B.6.9×10﹣7 C.69×10﹣8 D.6.9×1072.估计﹣÷2的运算结果在哪两个整数之间()A.0和1 B.1和2 C.2和3 D.3和43.如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为()A.1 B. C.-1 D.+14.平面直角坐标系中的点P(2﹣m,m)在第一象限,则m的取值范围在数轴上可表示为()A. B.C. D.5.实数在数轴上的点的位置如图所示,则下列不等关系正确的是()A.a+b>0 B.a-b<0 C.<0 D.>6.一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.下列叙述错误的是()A.AB两地相距1000千米B.两车出发后3小时相遇C.动车的速度为D.普通列车行驶t小时后,动车到达终点B地,此时普通列车还需行驶千米到达A地7.不等式组的解集为.则的取值范围为()A. B. C. D.8.在函数y=中,自变量x的取值范围是()A.x≥0 B.x≤0 C.x=0 D.任意实数9.在实数0,-π,,-4中,最小的数是()A.0 B.-π C. D.-410.菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.14二、填空题(本大题共6个小题,每小题3分,共18分)11.如果将抛物线平移,使平移后的抛物线顶点坐标为,那么所得新抛物线的表达式是__________.12.在一次数学测试中,同年级人数相同的甲、乙两个班的成绩统计如下表:班级平均分中位数方差甲班乙班数学老师让同学们针对统计的结果进行一下评估,学生的评估结果如下:这次数学测试成绩中,甲、乙两个班的平均水平相同;甲班学生中数学成绩95分及以上的人数少;乙班学生的数学成绩比较整齐,分化较小.上述评估中,正确的是______填序号13.抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A在点(-3,1)和(-2,1)之间,其部分图象如图,则以下结论:①b2-4ac<1;②当x>-1时y随x增大而减小;③a+b+c<1;④若方程ax2+bx+c-m=1没有实数根,则m>2;

⑤3a+c<1.其中,正确结论的序号是________________.14.如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=____.15.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为_______.16.若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为______.三、解答题(共8题,共72分)17.(8分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)本次调查的学生总数为_____人,被调查学生的课外阅读时间的中位数是_____小时,众数是_____小时;并补全条形统计图;(2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是_____;(3)若全校九年级共有学生800人,估计九年级一周课外阅读时间为6小时的学生有多少人?18.(8分)如图,平面直角坐标系中,直线与x轴,y轴分别交于A,B两点,与反比例函数的图象交于点.求反比例函数的表达式;若点C在反比例函数的图象上,点D在x轴上,当四边形ABCD是平行四边形时,求点D的坐标.19.(8分)如图1在正方形ABCD的外侧作两个等边三角形ADE和DCF,连接AF,BE.请判断:AF与BE的数量关系是,位置关系;如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.20.(8分)请根据图中提供的信息,回答下列问题:一个水瓶与一个水杯分别是多少元?甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)21.(8分)为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?22.(10分)如图,在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F.(1)当AE平分∠BAC时,求证:∠BEF=∠BFE;(2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长.23.(12分)如图是根据对某区初中三个年级学生课外阅读的“漫画丛书”、“科普常识”、“名人传记”、“其它”中,最喜欢阅读的一种读物进行随机抽样调查,并绘制了下面不完整的条形统计图和扇形统计图(每人必选一种读物,并且只能选一种),根据提供的信息,解答下列问题:(1)求该区抽样调查人数;(2)补全条形统计图,并求出最喜欢“其它”读物的人数在扇形统计图中所占的圆心角度数;(3)若该区有初中生14400人,估计该区有初中生最喜欢读“名人传记”的学生是多少人?24.先化简再求值:÷(a﹣),其中a=2cos30°+1,b=tan45°.

参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】试题解析:0.00000069=6.9×10-7,故选B.点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.2、D【解析】

先估算出的大致范围,然后再计算出÷2的大小,从而得到问题的答案.【详解】25<32<31,∴5<<1.原式=﹣2÷2=﹣2,∴3<﹣÷2<2.故选D.【点睛】本题主要考查的是二次根式的混合运算,估算无理数的大小,利用夹逼法估算出的大小是解题的关键.3、C【解析】【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质结合S△ADE=S四边形BCED,可得出,结合BD=AB﹣AD即可求出的值.【详解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴,∵S△ADE=S四边形BCED,S△ABC=S△ADE+S四边形BCED,∴,∴,故选C.【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.4、B【解析】

根据第二象限中点的特征可得:,解得:.在数轴上表示为:故选B.考点:(1)、不等式组;(2)、第一象限中点的特征5、C【解析】

根据点在数轴上的位置,可得a,b的关系,根据有理数的运算,可得答案.【详解】解:由数轴,得b<-1,0<a<1.A、a+b<0,故A错误;B、a-b>0,故B错误;C、<0,故C符合题意;D、a2<1<b2,故D错误;故选C.【点睛】本题考查了实数与数轴,利用点在数轴上的位置得出b<-1,0<a<1是解题关键,又利用了有理数的运算.6、C【解析】

可以用物理的思维来解决这道题.【详解】未出发时,x=0,y=1000,所以两地相距1000千米,所以A选项正确;y=0时两车相遇,x=3,所以B选项正确;设动车速度为V1,普车速度为V2,则3(V1+V2)=1000,所以C选项错误;D选项正确.【点睛】理解转折点的含义是解决这一类题的关键.7、B【解析】

求出不等式组的解集,根据已知得出关于k的不等式,求出不等式的解集即可.【详解】解:解不等式组,得.∵不等式组的解集为x<2,∴k+1≥2,解得k≥1.故选:B.【点睛】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式组的解集和已知得出关于k的不等式,难度适中.8、C【解析】

当函数表达式是二次根式时,被开方数为非负数.据此可得.【详解】解:根据题意知,

解得:x=0,

故选:C.【点睛】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.9、D【解析】

根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【详解】∵正数大于0和一切负数,∴只需比较-π和-1的大小,∵|-π|<|-1|,∴最小的数是-1.故选D.【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.10、A【解析】

根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OHAB.【详解】∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD.∵H为AD边中点,∴OH是△ABD的中位线,∴OHAB7=3.1.故选A.【点睛】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、.【解析】

平移不改变抛物线的开口方向与开口大小,即解析式的二次项系数不变,根据抛物线的顶点式可求抛物线解析式.【详解】∵原抛物线解析式为y=1x1,顶点坐标是(0,0),平移后抛物线顶点坐标为(1,1),∴平移后的抛物线的表达式为:y=1(x﹣1)1+1.故答案为:y=1(x﹣1)1+1.【点睛】本题考查了抛物线的平移与解析式变化的关系.关键是明确抛物线的平移实质上是顶点的平移,能用顶点式表示平移后的抛物线解析式.12、【解析】

根据平均数、中位数和方差的意义分别对每一项进行解答,即可得出答案.【详解】解:∵甲班的平均成绩是92.5分,乙班的平均成绩是92.5分,∴这次数学测试成绩中,甲、乙两个班的平均水平相同;故正确;∵甲班的中位数是95.5分,乙班的中位数是90.5分,甲班学生中数学成绩95分及以上的人数多,故错误;∵甲班的方差是41.25分,乙班的方差是36.06分,甲班的方差大于乙班的方差,乙班学生的数学成绩比较整齐,分化较小;故正确;上述评估中,正确的是;故答案为:.【点睛】本题考查平均数、中位数和方差,平均数表示一组数据的平均程度中位数是将一组数据从小到大或从大到小重新排列后,最中间的那个数或最中间两个数的平均数;方差是用来衡量一组数据波动大小的量.13、②③④⑤【解析】试题解析:∵二次函数与x轴有两个交点,∴b2-4ac>1,故①错误,观察图象可知:当x>-1时,y随x增大而减小,故②正确,∵抛物线与x轴的另一个交点为在(1,1)和(1,1)之间,∴x=1时,y=a+b+c<1,故③正确,∵当m>2时,抛物线与直线y=m没有交点,∴方程ax2+bx+c-m=1没有实数根,故④正确,∵对称轴x=-1=-,∴b=2a,∵a+b+c<1,∴3a+c<1,故⑤正确,故答案为②③④⑤.14、5【解析】试题分析:根据直角三角形斜边上的中线等于斜边的一半,可得CE=AB=5.考点:直角三角形斜边上的中线.15、【解析】

如图,作OH⊥CD于H,连结OC,根据垂径定理得HC=HD,由题意得OA=4,即OP=2,在Rt△OPH中,根据含30°的直角三角形的性质计算出OH=OP=1,然后在在Rt△OHC中,利用勾股定理计算得到CH=,即CD=2CH=2.【详解】解:如图,作OH⊥CD于H,连结OC,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH=,∴CD=2CH=2.故答案为2.【点睛】本题主要考查了圆的垂径定理,勾股定理和含30°角的直角三角形的性质,解此题的关键在于作辅助线得到直角三角形,再合理利用各知识点进行计算即可16、-1【解析】

根据关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根可知△=0,求出m的取值即可.【详解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案为-1.【点睛】本题考查的是根的判别式,即一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.三、解答题(共8题,共72分)17、(1)50;4;5;画图见解析;(2)144°;(3)64【解析】

(1)根据统计图可知,课外阅读达3小时的共10人,占总人数的20%,由此可得出总人数;求出课外阅读时间4小时与6小时男生的人数,再根据中位数与众数的定义即可得出结论;根据求出的人数补全条形统计图即可;

(2)求出课外阅读时间为5小时的人数,再求出其人数与总人数的比值即可得出扇形的圆心角度数;

(3)求出总人数与课外阅读时间为6小时的学生人数的百分比的积即可.【详解】解:(1)∵课外阅读达3小时的共10人,占总人数的20%,∴=50(人).∵课外阅读4小时的人数是32%,∴50×32%=16(人),∴男生人数=16﹣8=8(人);∴课外阅读6小时的人数=50﹣6﹣4﹣8﹣8﹣8﹣12﹣3=1(人),∴课外阅读3小时的是10人,4小时的是16人,5小时的是20人,6小时的是4人,∴中位数是4小时,众数是5小时.补全图形如图所示.故答案为50,4,5;(2)∵课外阅读5小时的人数是20人,∴×360°=144°.故答案为144°;(3)∵课外阅读6小时的人数是4人,∴800×=64(人).答:九年级一周课外阅读时间为6小时的学生大约有64人.【点睛】本题考查了统计图与中位数、众数的知识点,解题的关键是熟练的掌握中位数与众数的定义与根据题意作图.18、(1)y=(1)(1,0)【解析】

(1)将点M的坐标代入一次函数解析式求得a的值;然后将点M的坐标代入反比例函数解析式,求得k的值即可;(1)根据平行四边形的性质得到BC∥AD且BD=AD,结合图形与坐标的性质求得点D的坐标.【详解】解:(1)∵点M(a,4)在直线y=1x+1上,∴4=1a+1,解得a=1,∴M(1,4),将其代入y=得到:k=xy=1×4=4,∴反比例函数y=(x>0)的表达式为y=;(1)∵平面直角坐标系中,直线y=1x+1与x轴,y轴分别交于A,B两点,∴当x=0时,y=1.当y=0时,x=﹣1,∴B(0,1),A(﹣1,0).∵BC∥AD,∴点C的纵坐标也等于1,且点C在反比例函数图象上,将y=1代入y=,得1=,解得x=1,∴C(1,1).∵四边形ABCD是平行四边形,∴BC∥AD且BD=AD,由B(0,1),C(1,1)两点的坐标知,BC∥AD.又BC=1,∴AD=1,∵A(﹣1,0),点D在点A的右侧,∴点D的坐标是(1,0).【点睛】考查了反比例函数与一次函数交点问题.熟练掌握平行四边形的性质和函数图象上点的坐标特征是解决问题的关键,难度适中.19、(1)AF=BE,AF⊥BE;(2)证明见解析;(3)结论仍然成立【解析】试题分析:(1)根据正方形和等边三角形可证明△ABE≌△DAF,然后可得BE=AF,∠ABE=∠DAF,进而通过直角可证得BE⊥AF;(2)类似(1)的证法,证明△ABE≌△DAF,然后可得AF=BE,AF⊥BE,因此结论还成立;(3)类似(1)(2)证法,先证△AED≌△DFC,然后再证△ABE≌△DAF,因此可得证结论.试题解析:解:(1)AF=BE,AF⊥BE.(2)结论成立.证明:∵四边形ABCD是正方形,∴BA="AD"=DC,∠BAD=∠ADC=90°.在△EAD和△FDC中,∴△EAD≌△FDC.∴∠EAD=∠FDC.∴∠EAD+∠DAB=∠FDC+∠CDA,即∠BAE=∠ADF.在△BAE和△ADF中,∴△BAE≌△ADF.∴BE=AF,∠ABE=∠DAF.∵∠DAF+∠BAF=90°,∴∠ABE+∠BAF=90°,∴AF⊥BE.(3)结论都能成立.考点:正方形,等边三角形,三角形全等20、(1)一个水瓶40元,一个水杯是8元;(2)当10<n<25时,选择乙商场购买更合算.当n>25时,选择甲商场购买更合算.【解析】

(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果.【详解】解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意得:3x+4(48﹣x)=152,解得:x=40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(40×5+8n)×80%=160+6.4n乙商场所需费用为5×40+(n﹣5×2)×8=120+8n则∵n>10,且n为整数,∴160+6.4n﹣(120+8n)=40﹣1.6n讨论:当10<n<25时,40﹣1.6n>0,160+0.64n>120+8n,∴选择乙商场购买更合算.当n>25时,40﹣1.6n<0,即160+0.64n<120+8n,∴选择甲商场购买更合算.【点睛】此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.21、(1);(2)至少需要30分钟后生才能进入教室.(3)这次消毒是有效的.【解析】

(1)药物燃烧时,设出y与x之间的解析式y=k1x,把点(8,6)代入即可,从图上读出x的取值范围;药物燃烧后,设出y与x之间的解析式y=,把点(8,6)代入即可;(2)把y=1.6代入反比例函数解析式,求出相应的x;(3)把y=3代入正比例函数解析式和反比例函数解析式,求出相应的x,两数之差与10进行比较,大于或等于10就有效.【详解】解:(1)设药物燃烧时y关于x的函数关系式为y=k1x(k1>0)代入(8,6)为6=8k1∴k1=设药物燃烧后y关于x的函数关系式为y=(k2>0)代入(8,6)为6=,∴k2=48∴药物燃烧时y关于x的函数关系式为(0≤x≤8)药物燃烧后y关于x的函数关系式为(x>8)∴(2)结合实际,令中y≤1.6得x≥30即从消毒开始,至少需要30分钟后生才能进入教室.(3)把y=3代入,得:x=4把y=3代入,得:x=16∵16﹣4=12所以这次消毒是有效的.【点睛】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.22、(1)证明见解析;(1)2【解析】分析:(1)根据角平分线的定义可得∠1=∠1,再根据等角的余角相等求出∠BE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论