2023-2024学年天津市十二重点中学数学高一下期末学业质量监测模拟试题含解析_第1页
2023-2024学年天津市十二重点中学数学高一下期末学业质量监测模拟试题含解析_第2页
2023-2024学年天津市十二重点中学数学高一下期末学业质量监测模拟试题含解析_第3页
2023-2024学年天津市十二重点中学数学高一下期末学业质量监测模拟试题含解析_第4页
2023-2024学年天津市十二重点中学数学高一下期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年天津市十二重点中学数学高一下期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的图像如图所示,则和分别是()A. B. C. D.2.函数的图象()A.关于点(-,0)对称 B.关于原点对称 C.关于y轴对称 D.关于直线x=对称3.已知扇形的半径为,圆心角为,则该扇形的面积为()A. B. C. D.4.某中学初中部共有110名教师,高中部共有150名教师,根据下列频率分布条形图(部分)可知,该校女教师的人数为()A.93 B.123 C.137 D.1675.已知向量,,则向量的夹角的余弦值为()A. B. C. D.6.在等比数列中,,,则等于()A.256 B.-256 C.128 D.-1287.已知,则的值等于()A. B. C. D.8.在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B. C. D.9.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是()A. B. C. D.10.已知直线经过两点,则的斜率为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在四面体中,平面ABC,,若四面体ABCD的外接球的表面积为,则四面体ABCD的体积为_______.12.如图是一个算法流程图.若输出的值为4,则输入的值为______________.13.函数在的值域是______________.14.如图所示,正方体的棱长为3,以其所有面的中心为顶点的多面体的体积为_____.15.设向量,,______.16.的值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四棱锥P-ABCD的底面是矩形,侧面PAD是正三角形,且侧面PAD⊥底面ABCD,E为侧棱PD的中点.(1)求证:PB//平面EAC;(2)求证:AE⊥平面PCD;(3)当为何值时,PB⊥AC?18.设函数.(1)求函数的单调递减区间;(2)若,求函数的值域.19.如图,在中,,D是BC边上的一点,,,.(1)求的大小;(2)求边的长.20.△ABC的内角A,B,C所对边分别为,已知△ABC面积为.(1)求角C;(2)若D为AB中点,且c=2,求CD的最大值.21.已知角的顶点与原点重合,其始边与轴正半轴重合,终边与单位圆交于点,若,且.(1)求的值;(2)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

通过识别图像,先求,再求周期,将代入求即可【详解】由图可知:,,将代入得,又,,故故选C【点睛】本题考查通过三角函数识图求解解析式,属于基础题2、A【解析】

关于点(-,0)对称,选A.3、A【解析】

化圆心角为弧度值,再由扇形面积公式求解即可.【详解】扇形的半径为,圆心角为,即,该扇形的面积为,故选.【点睛】本题主要考查扇形的面积公式的应用.4、C【解析】.5、C【解析】

先求出向量,再根据向量的数量积求出夹角的余弦值.【详解】∵,∴.设向量的夹角为,则.故选C.【点睛】本题考查向量的线性运算和向量夹角的求法,解题的关键是求出向量的坐标,然后根据数量积的定义求解,注意计算的准确性,属于基础题.6、A【解析】

先设等比数列的公比为,根据题中条件求出,进而可求出结果.【详解】设等比数列的公比为,因为,,所以,因此.故选A【点睛】本题主要考查等比数列的基本量的计算,熟记通项公式即可,属于基础题型.7、B【解析】.8、C【解析】

利用正方体中,,将问题转化为求共面直线与所成角的正切值,在中进行计算即可.【详解】在正方体中,,所以异面直线与所成角为,设正方体边长为,则由为棱的中点,可得,所以,则.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.9、B【解析】

利用古典概型概率公式求解即可.【详解】设三件正品分别记为,一件次品记为则从三件正品、一件次品中随机取出两件,取出的产品可能为,共6种情况,其中取出的产品全是正品的有3种所以产品全是正品的概率故选:B【点睛】本题主要考查了利用古典概型概率公式计算概率,属于基础题.10、A【解析】

直接代入两点的斜率公式,计算即可得出答案。【详解】故选A【点睛】本题考查两点的斜率公式,属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

设,再根据外接球的直径与和底面外接圆的一条直径构成直角三角形求解进而求得体积即可.【详解】设,底面外接圆直径为.易得底面是边长为3的等边三角形.则由正弦定理得.又外接球的直径与和底面外接圆的一条直径构成直角三角形有.又外接球的表面积为,即.解得.故四面体体积为.故答案为:【点睛】本题主要考查了侧棱垂直于底面的四面体的外接球问题.需要根据题意建立底面三角形外接圆的直径和三棱锥的高与外接球直径的关系再求解.属于中档题.12、-1【解析】

对的范围分类,利用流程图列方程即可得解.【详解】当时,由流程图得:令,解得:,满足题意.当时,由流程图得:令,解得:,不满足题意.故输入的值为:【点睛】本题主要考查了流程图知识,考查分类思想及方程思想,属于基础题.13、【解析】

利用,即可得出.【详解】解:由已知,,又

故答案为:.【点睛】本题考查了反三角函数的求值、单调性,考查了推理能力与计算能力,属于中档题.14、【解析】

该多面体为正八面体,将其转化为两个正四棱锥,通过计算两个正四棱锥的体积计算出正八面体的体积.【详解】以正方体所有面的中心为顶点的多面体为正八面体,也可以看作是两个正四棱锥的组合体,每一个正四棱锥的侧棱长与底面边长均为.则其中一个正四棱锥的高为h.∴该多面体的体积V.故答案为:【点睛】本小题主要考查正八面体、正四棱锥体积的计算,属于基础题.15、【解析】

利用向量夹角的坐标公式即可计算.【详解】.【点睛】本题主要考查了向量夹角公式的坐标运算,属于容易题.16、【解析】

=三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】

1)连结BD交AC于O,连结EO,由EO//PB可证PB//平面EA.(2)由侧面PAD⊥底面ABCD,,可证,又PAD是正三角形,所以AE⊥平面PCD.(3)设N为AD中点,连接PN,则,可证PN⊥底面ABCD,所以要使PB⊥AC,只需NB⊥AC,由相似三角形可求得比值.【详解】(1)连结BD交AC于O,连结EO,因为O,E分别为BD.PD的中点,所以EO//PB,,所以PB//平面EAC.(2)正三角形PAD中,E为PD的中点,所以,,又,所以,AE⊥平面PCD.(3)设N为AD中点,连接PN,则.又面PAD⊥底面ABCD,所以,PN⊥底面ABCD.所以,NB为PB在面ABCD上的射影.要使PB⊥AC,只需NB⊥AC,在矩形ABCD中,设AD=1,AB=x,由,得∽,解之得:,所以,当时,PB⊥AC.【点睛】本题综合考查线面平行的判定,线面垂直的判定,及探索性问题找异面直线垂直,第三问难度较大,需要把异面直线垂直转化为射影垂直,即共面垂直问题.18、(1);(2).【解析】分析:(1)由二倍角公式将表达式化一得到,,令,得到单调区间;(2)时,,根据第一问的表达式得到值域.详解:(1)由令得:所以,函数的单调减区间为(2)当时,所以,函数的值域是:.点睛:本题求最值利用三角函数辅助角公式将函数化为的形式,利用三角函数的图像特点得到函数的值域.19、(1)(2)【解析】

(1)在中,由余弦定理运算即可;(2)在中,由正弦定理运算即可.【详解】解:(1)在中,,,,由余弦定理可得,又,即;(2)由(1)得,在中,,,由正弦定理可得:,即.【点睛】本题考查了正弦定理、余弦定理的应用,属基础题.20、(1)(2)【解析】

(1)根据,由正弦定理化角为边,得,再根据余弦定理即可求出角C;(2)由余弦定理可得,又,结合基本不等式可求得.由中点公式的向量式得,再利用数量积的运算,即可求出的最大值.【详解】(1)依题意得,,由正弦定理得,,即,由余弦定理得,,又因为,所以.(2)∵,,∴,即.∵为中点,所以,∴当且仅当时,等号成立.所以的最大值为.【点睛】本题主要考查利用正、余弦定理解三角形,以及利用中点公式的向量式结合基本不等式解决

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论