版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年湖北省孝感中学高一数学第二学期期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,B是AC上一点,分别以AB,BC,AC为直径作半圆,从B作BD⊥AC,与半圆相交于D,AC=6,BD=22A.29 B.13 C.42.已知直线的倾斜角为,且过点,则直线的方程为()A. B. C. D.3.在中,内角A,B,C所对的边分别是a,b,c,若,,则的面积是()A. B. C. D.4.在平面直角坐标系中,角的顶点与原点重合,它的始边与轴的非负半轴重合,终边交单位圆于点,则的值为()A. B. C. D.5.已知过点的直线的倾斜角为,则直线的方程为()A. B. C. D.6.如图,在平行六面体中,M,N分别是所在棱的中点,则MN与平面的位置关系是()A.MN平面B.MN与平面相交C.MN平面D.无法确定MN与平面的位置关系7.若数列满足(,为常数),则称数列为“调和数列”.已知数列为调和数列,且,则的最大值是()A.50 B.100 C.150 D.2008.如图,在平行四边形中,下列结论中错误的是()A. B. C. D.9.在中,若,,,则等于()A.3 B.4 C.5 D.610.如图是一名篮球运动员在最近6场比赛中所得分数的茎叶图,则下列关于该运动员所得分数的说法错误的是()A.中位数为14 B.众数为13 C.平均数为15 D.方差为19二、填空题:本大题共6小题,每小题5分,共30分。11.在等差数列中,若,则______.12.设,数列满足,,将数列的前100项从大到小排列得到数列,若,则k的值为______;13.已知正四棱锥的底面边长为,高为,则该四棱锥的侧面积是______________14.如图为函数(,,,)的部分图像,则函数解析式为________15.若,则实数的值为_______.16.一个扇形的圆心角是2弧度,半径是4,则此扇形的面积是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量(1)求函数的单调递减区间;(2)在中,,若,求的周长.18.在中,内角,,的对边分别为,,.已知,,且的面积为.(1)求的值;(2)求的周长.19.某快餐连锁店招聘外卖骑手,该快餐连锁店提供了两种日工资方案:方案(1)规定每日底薪50元,快递业务每完成一单提成3元;方案(2)规定每日底薪100元,快递业务的前44单没有提成,从第45单开始,每完成一单提成5元.该快餐连锁店记录了每天骑手的人均业务量.现随机抽取100天的数据,将样本数据分为[25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七组,整理得到如图所示的频率分布直方图。(1)随机选取一天,估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率;(2)若骑手甲、乙选择了日工资方案(1),丙、丁选择了日工资方案(2).现从上述4名骑手中随机选取2人,求至少有1名骑手选择方案(1)的概率;20.已知α为锐角,且tanα=(I)求tanα+(II)求5sin21.如图,在中,,为内一点,.(1)若,求;(2)若,求的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
求得阴影部分的面积和最大的半圆的面积,再根据面积型几何概型的概率计算公式求解.【详解】连接AD,CD,可知△ACD是直角三角形,又BD⊥AC,所以BDAB=x(0<x<6),则有8=x(6-x),得x=2,所以AB=2, BC=4,由此可得图中阴影部分的面积等于π×3【点睛】本题考查了与面积有关的几何概型的概率的求法,当试验结果所构成的区域可用面积表示,用面积比计算概率.涉及了初中学习的射影定理,也可通过证明相似,求解各线段的长.2、B【解析】
根据倾斜角的正切值为斜率,再根据点斜式写出直线方程,化为一般式即可.【详解】因为直线的倾斜角为,故直线斜率.又直线过点,故由点斜式方程可得整理为一般式可得:.故选:B.【点睛】本题考查直线方程的求解,涉及点斜式,属基础题.3、C【解析】
根据题意,利用余弦定理可得ab,再利用三角形面积计算公式即可得出答案.【详解】由c2=(a﹣b)2+6,可得c2=a2+b2﹣2ab+6,由余弦定理:c2=a2+b2﹣2abcosC=a2+b2﹣ab,所以:a2+b2﹣2ab+6=a2+b2﹣ab,所以ab=6;则S△ABCabsinC;故选:C.【点睛】本题考查余弦定理、三角形面积计算公式,关键是利用余弦定理求出ab的值.4、C【解析】
根据三角函数的定义,即可求解,得到答案.【详解】由题意,角的顶点与原点重合,它的始边与轴的非负半轴重合,终边交单位圆于点,根据三角函数的定义可得.故选:C.【点睛】本题主要考查了三角的函数的定义,其中解答中熟记三角函数的定义是解答的关键,着重考查了推理与计算能力,属于基础题.5、B【解析】
由直线的倾斜角求得直线的斜率,再由直线的点斜式方程求解.【详解】∵直线的倾斜角为,∵直线的斜率,又直线过点,由直线方程的点斜式可得直线的方程为,即.故选:B.【点睛】本题考查直线的点斜式方程,考查直线的倾斜角与斜率的关系,是基础题.6、C【解析】
取的中点,连结,可证明平面平面,由于平面,可知平面.【详解】取的中点,连结,显然,因为平面,平面,所以平面,平面,又,故平面平面,又因为平面,所以平面.故选C.【点睛】本题考查了直线与平面的位置关系,考查了线面平行、面面平行的证明,属于基础题.7、B【解析】
根据调和数列定义知为等差数列,再由前20项的和为200知,最后根据基本不等式可求出的最大值。【详解】因为数列为调和数列,所以,即为等差数列又,又大于0所以【点睛】本题考查了新定义“调和数列”的性质、等差数列的性质及其前n项公式、基本不等式的性质,属于难题。8、C【解析】
根据向量的定义及运算法则一一分析选项正误即可.【详解】在平行四边形中,显然有,,故A,D正确;根据向量的平行四边形法则,可知,故B正确;根据向量的三角形法,,故C错误;故选:C.【点睛】本题考查平面向量的基本定义和运算法则,属于基础题.9、D【解析】
直接运用正弦定理求解即可.【详解】由正弦定理可知中:,故本题选D.【点睛】本题考查了正弦定理的应用,考查了数学运算能力.10、D【解析】从题设中所提供的茎叶图可知六个数分别是,所以其中位数是,众数是,平均数,方差是,应选答案D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用等差中项的性质可求出的值.【详解】由等差中项的性质可得,解得.故答案为:.【点睛】本题考查利用等差中项的性质求项的值,考查计算能力,属于基础题.12、【解析】
根据递推公式利用数学归纳法分析出与的关系,然后考虑将的前项按要求排列,再根据项的序号计算出满足的值即可.【详解】由已知,a1=a,0<a<1;并且函数y=ax单调递减;∵∴1>a2>a1∴,∴a2>a3>a1∵,且∴a2>a4>a3>a1……当为奇数时,用数学归纳法证明,当时,成立,设时,,当时,因为,结合的单调性,所以,所以即,所以时成立,所以为奇数时,;当为偶数时,用数学归纳法证明,当时,成立,设时,,当时,因为,结合的单调性,所以,所以即,所以时成立,所以为偶数时,;用数学归纳法证明:任意偶数项大于相邻的奇数项即证:当为奇数,,当时,符合,设时,,当时,因为,结合的单调性,所以,所以,所以,所以时成立,所以当为奇数时,,据此可知:,当时,若,则有,此时无解;当时,此时的下标成首项为公差为的等差数列,通项即为,若,所以,所以.故答案为:.【点睛】本题考查数列与函数的综合应用,难度较难.(1)分析数列的单调性时,要注意到数列作为特殊的函数,其定义域为;(2)证明数列的单调性可从与的关系入手分析.13、【解析】四棱锥的侧面积是14、【解析】
由函数的部分图像,先求得,得到,再由,得到,结合,求得,即可得到函数的解析式.【详解】由题意,根据函数的部分图像,可得,所以,又由,即,又由,即,解得,即,又因为,所以,所以.故答案为:.【点睛】本题主要考查了利用三角函数的图象求解函数的解析式,其中解答中熟记三角函数的图象与性质,准确计算是解答的关键,着重考查了数形结合思想,以及推理与计算能力,属于基础题.15、【解析】
由得,代入方程即可求解.【详解】,.,,,即,故填.【点睛】本题主要考查了反三角函数的定义及运算性质,属于中档题.16、16【解析】
利用公式直接计算即可.【详解】扇形的面积.故答案为:.【点睛】本题考查扇形的面积,注意扇形的面积公式有两个:,其中为扇形的半径,为圆心角的弧度数,为扇形的弧长,可根据题设条件合理选择一个,本题属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)根据向量的数量积公式、二倍角公式及辅助角公式将化简为,然后利用三角函数的性质,即可求得的单调减区间;(2)由(1)及可求得,由可得,再结合余弦定理即可求得,进而可得的周长.【详解】解:(1)所以函数的单调递减区间为:(2),,又因在中,,,设的三个内角所对的边分别为,又,且,,则,所以的周长为.【点睛】本题考查平面向量的数量积公式,三角函数的二倍角公式、辅助角公式和三角函数的性质,以及利用正弦定理、余弦定理解三角形,考查理解辨析能力及求解运算能力,属于中档题.18、(1)(2)【解析】
(1)由和可得sinA和cosA,再由二倍角公式即得cos2A;(2)由面积公式,可得的值,再由和正弦定理可知b和c的值,用余弦定理可计算出a,即得的周长.【详解】解:(1)因为,所以,.因为,所以,,则.(2)由题意可得,的面积为,即.因为,所以,所以,.由余弦定理可得.故的周长为.【点睛】本题考查用正弦定理和余弦定理解三角形,以及二倍角公式,属于常考题型.19、(1)0.4(2)【解析】
(1)从频率分布直方图中计算出前四组矩形面积之和,即为所求概率;(2)列举出全部的基本事件,并确定出基本事件的总数,然后从中找出事件“至少有名骑手选择方案(1)”所包含的基本事件数,最后利用古典概型的概率公式可计算出结果。【详解】(1)设事件为“随机选取一天,这一天该连锁店的骑手的人均日快递业务量不少于单”依题意,连锁店的人均日快递业务量不少于单的频率分别为:因为所以估计为;(2)设事件为“从四名骑手中随机选取2人,至少有1名骑手选择方案(1)”从四名新聘骑手中随机选取2名骑手,有6种情况,即{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}其中至少有1名骑手选择方案()的情况为{甲,乙},{甲,丙},,{甲,丁},{乙,丙},{乙,丁},所以。【点睛】本题考查频率分布直方图以及古典概型概率的计算,在频率分布直方图的问题中要注意:(1)每组矩形的面积等于该组数据的频率;(2)所有矩形的面积之和为。20、(I)tanα+π【解析】试题分析:(1)根据两角和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黑龙江大学《速写》2021-2022学年第一学期期末试卷
- 新学期计划十篇
- 黑龙江大学《人力资源管理思想史》2022-2023学年第一学期期末试卷
- 2024年房产代理业务合作协议版
- 2024年度定制培训服务协议版
- 黑龙江大学《工程力学》2023-2024学年第一学期期末试卷
- 2024年度设计岗位劳动协议范本版
- 国庆节在家游戏活动方案
- 2024年智能化仓储与配送服务协议版
- 2024年专业钢筋水泥销售协议样式版
- 2024-2030年中国节庆饰品市场发展趋势及营销策略分析报告
- 长川科技校招笔试题
- 2024学年江苏省南京市高二上学期期中考英语试题及答案
- 2024-2030年中国口含烟行业发展趋势及投资风险分析研究报告
- 人教版2024年七年级上册英语期中学业质量评价测试卷(含答案)
- 2024年甘肃省临夏州中考语文真题(含解析)
- 2024年山西省中考生物试题卷(含答案解析)
- 2023-2024学年北京市海淀区建华实验学校4-6班八年级(上)期中数学试卷【含解析】
- GB/T 23862-2024文物包装与运输规范
- 2024年江苏苏州市(12345)便民服务中心招聘座席代表人员(高频重点复习提升训练)共500题附带答案详解
- 九年级化学上册(沪教版2024)新教材解读课件
评论
0/150
提交评论