版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省宁波市余姚市余姚中学高一数学第二学期期末达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数 B.平均数C.方差 D.极差2.甲、乙两名运动员分别进行了5次射击训练,成绩如下:甲:7,7,8,8,1;乙:8,9,9,9,1.若甲、乙两名运动员的平均成绩分别用表示,方差分别用表示,则A. B.C. D.3.直线的倾斜角为A. B. C. D.4.已知为直线,,为两个不同的平面,则下列结论正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则5.已知过点的直线的倾斜角为,则直线的方程为()A. B. C. D.6.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A. B.C. D.7.在中,设角,,的对边分别是,,,且,则一定是()A.等边三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形8.一个体积为的正三棱柱(底面为正三角形,且侧棱垂直于底面的棱柱)的三视图如图所示,则该三棱柱的侧视图的面积为()A. B.3 C. D.129.已知扇形的弧长是8,其所在圆的直径是4,则扇形的面积是()A.8 B.6 C.4 D.1610.已知随机事件中,与互斥,与对立,且,则()A.0.3 B.0.6 C.0.7 D.0.9二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在中,,是边上一点,,则.12.函数()的值域是__________.13.关于的不等式,对于恒成立,则实数的取值范围为_______.14.设向量满足,,,.若,则的最大值是________.15.已知数列,其中,若数列中,恒成立,则实数的取值范围是_______.16.如图,已知,,任意点关于点的对称点为,点关于点的对称点为,则向量_______(用,表示向量)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列为等差数列,且.(1)求数列的通项公式;(2)求数列的前项和.18.在等差数列中,,其前项和为,等比数列的各项均为正数,,且,.(1)求数列和的通项公式;(2)令,设数列的前项和为,求()的最大值与最小值.19.已知数列满足关系式,.(1)用表示,,;(2)根据上面的结果猜想用和表示的表达式,并用数学归纳法证之.20.如图,是平行四边形,平面,,,,.(1)求证:平面;(2)求直线与平面所成角的正弦值.21.已知数列,.(1)若数列是等比数列,且,求数列的通项公式;(2)若数列是等差数列,且,数列满足,当时,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案.【详解】设9位评委评分按从小到大排列为.则①原始中位数为,去掉最低分,最高分,后剩余,中位数仍为,A正确.②原始平均数,后来平均数平均数受极端值影响较大,与不一定相同,B不正确③由②易知,C不正确.④原极差,后来极差可能相等可能变小,D不正确.【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.2、D【解析】
分别计算平均值和方差,比较得到答案.【详解】由题意可得,,.故.故答案选D【点睛】本题考查了数据的平均值和方差的计算,意在考查学生的计算能力.3、D【解析】
把直线方程的一般式方程化为斜截式方程,求出斜率,根据斜率与倾斜角的关系,求出倾斜角.【详解】,设直线的倾斜角为,,故本题选D.【点睛】本题考查了直线方程之间的转化、利用斜率求直线的倾斜角问题.4、C【解析】
利用直线与平面平行、垂直的判断即可。【详解】对于A.若,,则或,所以A错对于B.若,,则,应该为,所以B错对于D.若,,则或,所以D错。所以选择C【点睛】本题主要考查了直线与平面垂直和直线与平面平行的性质。属于基础题。5、B【解析】
由直线的倾斜角求得直线的斜率,再由直线的点斜式方程求解.【详解】∵直线的倾斜角为,∵直线的斜率,又直线过点,由直线方程的点斜式可得直线的方程为,即.故选:B.【点睛】本题考查直线的点斜式方程,考查直线的倾斜角与斜率的关系,是基础题.6、B【解析】试题分析:从甲乙等名学生中随机选出人,基本事件的总数为,甲被选中包含的基本事件的个数,所以甲被选中的概率,故选B.考点:古典概型及其概率的计算.7、C【解析】
利用二倍角公式化简已知表达式,利用余弦定理化角为边的关系,即可推出三角形的形状.【详解】解:因为,所以,即,由余弦定理可知:,所以.所以三角形是直角三角形.故选:.【点睛】本题考查三角形的形状的判断,余弦定理的应用,考查计算能力,属于中档题.8、A【解析】
根据侧视图的宽为求出正三角形的边长为4,再根据体积求出正三棱柱的高,再求侧视图的面积。【详解】侧视图的宽即为俯视图的高,即三角形的边长为4,又侧视图的面积为:【点睛】理解:侧视图的宽即为俯视图的高,即可求解本题。9、A【解析】
直接利用扇形的面积公式求解.【详解】扇形的弧长l=8,半径r=2,由扇形的面积公式可知,该扇形的面积S=1故选A【点睛】本题主要考查扇形面积的计算,意在考查学生对该知识的理解掌握水平和分析推理能力.10、C【解析】
由对立事件概率关系得到B发生的概率,再由互斥事件的概率计算公式求P(A+B).【详解】因为,事件B与C对立,所以,又,A与B互斥,所以,故选C.【点睛】本题考查互斥事件的概率,能利用对立事件概率之和为1进行计算,属于基本题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由图及题意得
,
=
∴
=(
)(
)=
+
=
=
.12、【解析】
由,根据基本不等式即可得出,然后根据对数函数的单调性即可得出,即求出原函数的值域.【详解】解:,当且仅当,时取等号,;原函数的值域是.故答案为:.【点睛】考查函数的值域的定义及求法,基本不等式的应用,以及对数函数的单调性,增函数的定义.13、或【解析】
利用换元法令,则对任意的恒成立,再对分两种情况讨论,令求出函数的最小值,即可得答案.【详解】令,则对任意的恒成立,(1)当,即时,上式显然成立;(2)当,即时,令①当时,,显然不成立,故不成立;②当时,,∴解得:综上所述:或.故答案为:或.【点睛】本题考查含绝对值函数的最值问题,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力和运算求解能力,求解时注意分段函数的最值求解.14、【解析】
令,计算出模的最大值即可,当与同向时的模最大.【详解】令,则,因为,所以当,,因此当与同向时的模最大,【点睛】本题主要考查了向量模的计算,以及二次函数在给定区间上的最值.整体换元的思想,属于较的难题,在解二次函数的问题时往往结合图像、开口、对称轴等进行分析.15、【解析】
由函数(数列)单调性确定的项,哪些项取,哪些项取,再由是最小项,得不等关系.【详解】由题意数列是递增数列,数列是递减数列,存在,使得时,,当时,,∵数列中,是唯一的最小项,∴或,或,或,综上.∴的取值范围是.故答案为:.【点睛】本题考查数列的单调性与最值.解题时楞借助函数的单调性求解.但数列是特殊的函数,它的自变量只能取正整数,因此讨论时与连续函数有一些区别.16、【解析】
先求得,然后根据中位线的性质,求得.【详解】依题意,由于分别是线段的中点,故.【点睛】本小题主要考查平面向量减法运算,考查三角形中位线,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】试题分析:(1)由于为等差数列,根据已知条件求出的第一项和第三项求得数列的公差,即得数列的通项公式,移项可得数列的通项公式;(2)由(1)可知,通过分组求和根据等差数列和等比数列的前项和公式求得的前项和.试题解析:(1)设数列的公差为,∵,∴,∴,∴.(2)考点:等差数列的通项公式及数列求和.18、(1),;(2)的最大值是,最小值是.【解析】试题分析:(1)由条件列关于公差与公比的方程组,解得,,再根据等差与等比数列通项公式求通项公式(2)化简可得,再根据等比数列求和公式得,结合函数单调性,可确定其最值试题解析:(1)设等差数列的公差为,等比数列的公比为,则解得,,所以,.(2)由(1)得,故,当为奇数时,,随的增大而减小,所以;当为偶数时,,随的增大而增大,所以,令,,则,故在时是增函数.故当为奇数时,;当为偶数时,,综上所述,的最大值是,最小值是.19、(1),,(2)猜想:,证明见解析【解析】
(1)根据递推关系依次代入求解,(2)根据规律猜想,再利用数学归纳法证明【详解】解:(1),∴,,;(2)猜想:.证明:当时,结论显然成立;假设时结论成立,即,则时,,即时结论成立.综上,对时结论成立.【点睛】本题考查归纳猜想与数学归纳法证明,考查基本分析论证能力,属基础题20、(1)见解析;(2).【解析】
(1)证明平面平面,然后利用平面与平面平行的性质得出平面;(2)作于点,连接,证明出平面,可得出直线与平面所成的角为,并计算出三边边长,并利用锐角三角函数计算出的正弦值,即可得出答案.【详解】(1)证明:,平面,平面,平面.同理可证平面.,平面平面.平面,平面;(2)作于点,连接,平面,平面,.又,,平面.则为与平面所成角,在中,,,,,,,,,,因此,直线与平面所成角的正弦值为.【点睛】本题考查直线与平面平行的证明,同时也考查了直线与平面所成角的计算,在计算空间角时要遵循“一作、二证、三计算”的原则来求解,考查逻辑推理能力,属于中等题.21、(1);(2).【解析】
(1)数列是公比为的等比数列,由等比数列的通项公式解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版浅析劳动合同法下gaming行业劳务派遣问题2篇
- 2024年度高品质原材料供应合同版B版
- 2024版设备采购合同:戊公司与己公司之间的设备采购及安装协议3篇
- 2024版物业公司车辆管理服务合同3篇
- 2024年供应商定期供应合作合同样本一
- 2024年度道路改造项目协议版B版
- 2024年房地产专业顾问服务协议模板版
- 2024年初创公司股权分配协议3篇
- 2024年企业间借款合同
- 2024年度物流仓储服务合同:供应链管理3篇
- 2024-2029年中国红蓝光治疗仪行业市场现状分析及竞争格局与投资发展研究报告
- (2024年)传染病培训课件
- 中医心脏病预防知识讲座
- 供应商环境与社会责任管理制度
- 铝蜂窝行业分析
- 军人职业行业分析
- 语境设置在初中英语教学中的应用 论文
- 物理学教育中的信息化教学设计方案
- 物联网环境监测系统设计
- 站务员:站务员考试试题
- 人工智能及其应用5课件
评论
0/150
提交评论