




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年福建省宁德一中数学高一下期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线kx+(1-k)y-3=0和直线(k-1)x+(2k+3)y-2=0互相垂直,则k=()A.-3或-1 B.3或1 C.-3或1 D.-1或32.设a>0,b>0,若是和的等比中项,则的最小值为()A.6 B. C.8 D.93.在四边形中,若,且,则四边形是()A.矩形 B.菱形 C.正方形 D.梯形4.直线上的点到圆上点的最近距离为()A. B. C. D.15.已知的内角、、的对边分别为、、,且,若,则的外接圆面积为()A. B. C. D.6.直线l:3x+4y+5=0被圆M:(x–2)2+(y–1)2=16截得的弦长为()A. B.5 C. D.107.空气质量指数是反映空气质量状况的指数,指数值越小,表明空气质量越好,其对应关系如表:指数值0~5051~100101~150151~200201~300空气质量优良轻度污染中度污染重度污染严重污染如图是某市10月1日-20日指数变化趋势:下列叙述错误的是()A.这20天中指数值的中位数略高于100B.这20天中的中度污染及以上的天数占C.该市10月的前半个月的空气质量越来越好D.总体来说,该市10月上旬的空气质量比中旬的空气质量好8.已知,,则等于()A. B. C. D.9.设,且,则()A. B. C. D.10.若两个正实数,满足,且不等式有解,则实数的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数(,)的部分图像如图所示,则函数解析式为_______.12.抽样调查某地区名教师的年龄和学历状况,情况如下饼图:则估计该地区岁以下具有研究生学历的教师百分比为_______.13.己知某产品的销售额y与广告费用x之间的关系如表:单位:万元01234单位:万元1015203035若求得其线性回归方程为,则预计当广告费用为6万元时的销售额为_____14.已知正实数x,y满足2x+y=2,则xy的最大值为______.15.在中,已知,则下列四个不等式中,正确的不等式的序号为____________①②③④16.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等差数列an满足a3=5,a6=a4(1)求数列an,b(2)设cn=anbn218.已知动点到定点的距离与到定点的距离之比为.(1)求动点的轨迹的方程;(2)过点作轨迹的切线,求该切线的方程.19.某企业2015年的纯利润为500万元,因为企业的设备老化等原因,企业的生产能力将逐年下降.若不进行技术改造,预测从2015年开始,此后每年比上一年纯利润减少20万元.如果进行技术改造,2016年初该企业需一次性投入资金600万元,在未扣除技术改造资金的情况下,预计2016年的利润为750万元,此后每年的利润比前一年利润的一半还多250万元.(1)设从2016年起的第n年(以2016年为第一年),该企业不进行技术改造的年纯利润为万元;进行技术改造后,在未扣除技术改造资金的情况下的年利润为万元,求和;(2)设从2016年起的第n年(以2016年为第一年),该企业不进行技术改造的累计纯利润为万元,进行技术改造后的累计纯利润为万元,求和;(3)依上述预测,从2016年起该企业至少经过多少年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润?20.从某居民区随机抽取10个家庭,获得第个家庭的月收入(单位:千元)与月储蓄,(单位:千元)的数据资料,算出,附:线性回归方程,其中为样本平均值.(1)求家庭的月储蓄对月收入的线性回归方程;(2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.21.设一元二次不等式的解集为.(Ⅰ)当时,求;(Ⅱ)当时,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
直接利用两直线垂直的充要条件列方程求解即可.【详解】因为直线kx+(1-k)y-3=0和直线(k-1)x+(2k+3)y-2=0互相垂直,所以k(k-1)+(1-k)(2k+3)=0,解方程可得k=1或k=-3,故选C.【点睛】本题主要考查直线与直线垂直的充要条件,属于基础题.对直线位置关系的考查是热点命题方向之一,这类问题以简单题为主,主要考查两直线垂直与两直线平行两种特殊关系:在斜率存在的前提下,(1)l1||l2⇔k12、D【解析】
试题分析:由题意a>0,b>0,且是和的等比中项,即,则,当且仅当时,即时取等号.考点:重要不等式,等比中项3、A【解析】
根据向量相等可知四边形为平行四边形;由数量积为零可知,从而得到四边形为矩形.【详解】,可知且四边形为平行四边形由可知:四边形为矩形本题正确选项:【点睛】本题考查相等向量、垂直关系的向量表示,属于基础题.4、C【解析】
求出圆心和半径,求圆心到直线的距离,此距离减去半径即得所求的结果.【详解】将圆化为标准形式可得可得圆心为,半径,而圆心到直线距离为,
因此圆上点到直线的最短距离为,故选:C.【点睛】本题考查直线和圆的位置关系,点到直线的距离公式的应用,求圆心到直线的距离是解题的关键,属于中档题.5、D【解析】
先化简得,再利用正弦定理求出外接圆的半径,即得的外接圆面积.【详解】由题得,所以,所以,所以,所以.由正弦定理得,所以的外接圆面积为.故选D【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.6、C【解析】
求出圆心到直线l的距离,再利用弦长公式进行求解即可.【详解】∵圆(x–2)2+(y–1)2=16,∴圆心(2,1),半径r=4,圆心到直线l:3x+4y+5=0的距离d==3,∴直线3x+4y+5=0被圆(x–2)2+(y–1)2=16截得的弦长l=2=2.故选C.【点睛】本题考查了直线被圆截得的弦长公式,主要用到了点到直线的距离公式.7、C【解析】
根据所给图象,结合中位数的定义、指数与污染程度的关系以及古典概型概率公式,对四个选项逐一判断即可.【详解】对,因为第10天与第11天指数值都略高100,所以中位数略高于100,正确;对,中度污染及以上的有第11,13,14,15,17天,共5天占,正确;对,由图知,前半个月中,前4天的空气质量越来越好,后11天该市的空气质量越来越差,错误;对,由图知,10月上旬大部分指数在100以下,10月中旬大部分指数在100以上,所以正确,故选C.【点睛】与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.8、D【解析】
通过化简可得,再根据,可得,利用同角三角函数可得,则答案可得.【详解】解:,又,得,即,又,且,解得,,故选:D.【点睛】本题考查三角恒等变形的化简和求值,是中档题.9、B【解析】
利用两角和差正切公式可求得;根据范围可求得;利用两角和差公式计算出;利用两角和差余弦公式计算出结果.【详解】,又本题正确选项:【点睛】本题考查利用三角恒等变换中的两角和差的正余弦和正切公式求解三角函数值的问题,涉及到同角三角函数关系的应用;关键是能够熟练应用两角和差公式进行配凑,求得所需的三角函数值.10、D【解析】
利用基本不等式求得的最小值,根据不等式存在性问题,解一元二次不等式求得的取值范围.【详解】由于,而不等式有解,所以,即,解得或.故选:D【点睛】本小题主要考查利用基本不等式求最小值,考查不等式存在性问题的求解,考查一元二次不等式的解法,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、y=sin(2x+).【解析】
由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值答案可求【详解】根据函数y=sin(ωx+φ)(ω>0,0<φ)的部分图象,可得A=1,•,∴ω=2,再结合五点法作图可得2•φ=π,∴φ,则函数解析式为y=sin(2x+)故答案为:y=sin(2x+).【点睛】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值难度中档.12、【解析】
根据饼状图中的岁以下本科学历人数和占比可求得岁以下教师总人数,从而可得其中的具有研究生学历的教师人数,进而得到所求的百分比.【详解】由岁以下本科学历人数和占比可知,岁以下教师总人数为:人岁以下有研究生学历的教师人数为:人岁以下有研究生学历的教师的百分比为:本题正确结果:【点睛】本题考查利用饼状图计算总体中的数据分布和频率分布的问题,属于基础题.13、【解析】
由已知表格中数据求得,,再由回归直线方程过样本中心点求得,得到回归方程,取即可求得答案.【详解】解:,,,.则,取,得.故答案为:【点睛】本题考查线性回归方程的求法,考查计算能力,是基础题.14、【解析】
由基本不等式可得,可求出xy的最大值.【详解】因为,所以,故,当且仅当时,取等号.故答案为.【点睛】利用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件.15、②③【解析】
根据,分当和两种情况分类讨论,每一类中利用正、余弦函数的单调性判断,特别注意,当时,.【详解】当时,在上是增函数,因为,所以,因为在上是减函数,且,所以,当时,且,因为在上是减函数,所以,而,所以.故答案为:②③【点睛】本题主要考查了正弦函数与余弦函数的单调性在三角形中的应用,还考查了运算求解的能力,属于中档题.16、1.98.【解析】
本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【详解】由题意得,经停该高铁站的列车正点数约为,其中高铁个数为11+21+11=41,所以该站所有高铁平均正点率约为.【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)an=2n-1,【解析】
(1)利用等差数列、等比数列的通项公式即可求得;(2)由(1)知,cn=anbn2【详解】(1)设等差数列an的公差为d,等比数列bn的公比为因为a6=a4+4所以an由b3b5又显然b4必与b2同号,所以所以q2=b所以bn(2)由(1)知,cn则Tn12①-②,得1=1+1-所以Tn【点睛】用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“Sn-qSn”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.18、(1),(2)或【解析】
(1)首先根据题意列出等式,再化简即可得到轨迹方程.(2)首先根据题意设出切线方程,再利用圆心到切线的距离等于半径即可求出切线方程.【详解】(1)设,有题知,,所以点的轨迹的方程:.(2)当切线斜率不存在时,切线为圆心到的距离,舍去.当切线斜率存在时,设切线方程为.圆心到切线的距离,解得:或.即切线方程为:或.【点睛】本题第一问考查了圆的轨迹方程,第二问考查了直线与圆的位置关系中的切线问题,属于中档题.19、(1),(2),(3)至少经过4年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润.【解析】
(1)利用等差数列、等比数列的通项公式求和(2)是数列的前项和,是数列的前项和减去600,利用等差数列和等比数列的前项和公式求出即可(3)作差,利用函数的单调性,即可得出结论【详解】(1)由题意得是等差数列,所以由题意得所以所以是首项为250,公比为的等比数列所以所以(2)是数列的前项和所以是数列的前项和减去600,所以(3)易得此函数当时单调递增且时时所以至少经过4年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润.【点睛】本题考查的是数列的综合知识,包含通项公式的求法、前n项和的求法及数列的单调性.20、(1);(2)1.7【解析】
(1)根据数据,利用最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 跨国货物运输代理合同范例
- 2025版工程总承包合同EPC模式
- 高层办公楼建筑深度剖析
- 5《老师 您好》公开课一等奖创新教学设计(表格式)-1
- 局部冻伤的预防与护理
- 高中化学 第2章 元素与物质世界 第1节 元素与物质的分类一、二教学设计1 鲁科版必修1
- 电力供应与购买合同
- 人教版小学二年级上册数学 第6单元 第2课时 8的乘法口诀 教案
- 电商企业股份制联合入股合同
- 不锈钢制品施工合同模板
- 心肺复苏、电除颤、海姆立克理论考试测试题
- 硫酸车间焚硫炉烘炉及锅炉煮炉方案资料
- 大班语言《扁担和板凳》
- 新产品试产管理程序
- 各国关于数据与个人隐私的法律规定
- 人教版(PEP)五年级英语下册(U1-U4)单元专题训练(含答案)
- 维生素K2行业研究、市场现状及未来发展趋势(2020-2026)
- 定远县蔡桥水库在建工程实施方案
- 绘本故事《三只小猪盖房子》课件
- GB 13296-2013 锅炉、热交换器用不锈钢无缝钢管(高清版)
- 部编版八年级语文下册写作《学写读后感》精美课件
评论
0/150
提交评论