安徽宣城市2023-2024学年高一数学第二学期期末复习检测模拟试题含解析_第1页
安徽宣城市2023-2024学年高一数学第二学期期末复习检测模拟试题含解析_第2页
安徽宣城市2023-2024学年高一数学第二学期期末复习检测模拟试题含解析_第3页
安徽宣城市2023-2024学年高一数学第二学期期末复习检测模拟试题含解析_第4页
安徽宣城市2023-2024学年高一数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽宣城市2023-2024学年高一数学第二学期期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.以下有四个说法:①若、为互斥事件,则;②在中,,则;③和的最大公约数是;④周长为的扇形,其面积的最大值为;其中说法正确的个数是()A. B.C. D.2.设直线系.下列四个命题中不正确的是()A.存在一个圆与所有直线相交B.存在一个圆与所有直线不相交C.存在一个圆与所有直线相切D.M中的直线所能围成的正三角形面积都相等3.若直线x+(1+m)y-2=0与直线mx+2y+4=0平行,则m的值是()A.1 B.-2 C.1或-2 D.4.一个几何体的三视图如图所示,则这个几何体的体积等于()A. B.或 C.或 D.5.若平面向量a与b的夹角为60°,|b|=4,(aA.2B.4C.6D.126.平面与平面平行的充分条件可以是()A.内有无穷多条直线都与平行B.直线,,且直线a不在内,也不在内C.直线,直线,且,D.内的任何一条直线都与平行7.如图,网格纸上小正方形的边长为,粗实线画出的是某多面体的三视图,则此几何体的表面积为()A. B. C. D.8.已知函数的最小正周期是,其图象向右平移个单位后得到的函数为奇函数.有下列结论:①函数的图象关于点对称;②函数的图象关于直线对称;③函数在上是减函数;④函数在上的值域为.其中正确结论的个数是()A.1 B.2 C.3 D.49.若且,则下列四个不等式:①,②,③,④中,一定成立的是()A.①② B.③④ C.②③ D.①②③④10.设等比数列{an}的前n项和为Sn,若S6A.73 B.2 C.8二、填空题:本大题共6小题,每小题5分,共30分。11.在数列中,,,则________.12.如图,缉私艇在处发现走私船在方位角且距离为12海里的处正以每小时10海里的速度沿方位角的方向逃窜,缉私艇立即以每小时14海里的速度追击,则缉私艇追上走私船所需要的时间是__________小时.13.若,其中是第二象限角,则____.14.在数列中,,当时,.则数列的前项和是_____.15.若函数,则__________.16.在中,,是线段上的点,,若的面积为,当取到最大值时,___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校为创建“绿色校园”,在校园内种植树木,有A、B、C三种树木可供选择,已知这三种树木6年内的生长规律如下:A树木:种植前树木高0.84米,第一年能长高0.1米,以后每年比上一年多长高0.2米;B树木:种植前树木高0.84米,第一年能长高0.04米,以后每年生长的高度是上一年生长高度的2倍;C树木:树木的高度(单位:米)与生长年限(单位:年,)满足如下函数:(表示种植前树木的高度,取).(1)若要求6年内树木的高度超过5米,你会选择哪种树木?为什么?(2)若选C树木,从种植起的6年内,第几年内生长最快?18.已知函数,其图象的一个对称中心是,将的图象向左平移个单位长度后得到函数的图象.(1)求函数的解析式;(2)若对任意,当时,都有,求实数的最大值;(3)若对任意实数在上与直线的交点个数不少于6个且不多于10个,求实数的取值范围.19.已知数列和满足:,,,,且是以q为公比的等比数列.(1)求证:;(2)若,试判断是否为等比数列,并说明理由.(3)求和:.20.记公差不为零的等差数列{an}的前n项和为Sn,已知=2,是与的等比中项.(Ⅰ)求数列{an}的通项公式;(Ⅱ)求数列{}的前n项和Tn.21.已知直线经过点,且与轴正半轴交于点,与轴正半轴交于点,为坐标原点.(1)若点到直线的距离为4,求直线的方程;(2)求面积的最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

设、为对立事件可得出命题①的正误;利用大边对大角定理和余弦函数在上的单调性可判断出命题②的正误;列出和各自的约数,可找出两个数的最大公约数,从而可判断出命题③的正误;设扇形的半径为,再利用基本不等式可得出扇形面积的最大值,从而判断出命题④的正误.【详解】对于命题①,若、为对立事件,则、互斥,则,命题①错误;对于命题②,由大边对大角定理知,,且,函数在上单调递减,所以,,命题②正确;对于命题③,的约数有、、、、、,的约数有、、、、、、、,则和的最大公约数是,命题③正确;对于命题④,设扇形的半径为,则扇形的弧长为,扇形的面积为,由基本不等式得,当且仅当,即当时,等号成立,所以,扇形面积的最大值为,命题④错误.故选C.【点睛】本题考查命题真假的判断,涉及互斥事件的概率、三角形边角关系、公约数以及扇形面积的最值,判断时要结合这些知识点的基本概念来理解,考查推理能力,属于中等题.2、D【解析】

对于含变量的直线问题可采用赋特殊值法进行求解【详解】因为所以点到中每条直线的距离即为圆的全体切线组成的集合,所以存在圆心在,半径大于1的圆与中所有直线相交,A正确也存在圆心在,半径小于1的圆与中所有直线均不相交,B正确也存在圆心在半径等于1的圆与中所有直线相切,C正确故正确因为中的直线与以为圆心,半径为1的圆相切,所以中的直线所能围成的正三角形面积不都相等,如图

均为等边三角形而面积不等,故错误,答案选D.【点睛】本题从点到直线的距离关系出发,考查了圆的切线与圆的位置关系,解决此类题型应学会将条件进行有效转化.3、A【解析】

分类讨论直线的斜率情况,然后根据两直线平行的充要条件求解即可得到所求.【详解】①当时,两直线分别为和,此时两直线相交,不合题意.②当时,两直线的斜率都存在,由直线平行可得,解得.综上可得.故选A.【点睛】本题考查两直线平行的等价条件,解题的关键是将问题转化为对直线斜率存在性的讨论.也可利用以下结论求解:若,则且或且.4、D【解析】

作出几何体的直观图,可知几何体为正方体切一角所得的组合体,计算出正方体的体积和所切去三棱锥的体积,相减可得答案.【详解】几何体的直观图如下图所示:可知几何体为正方体切一角所得的组合体,因此,该几何体的体积为.故选:D.【点睛】本题考查的知识点是由三视图求体积,其中根据三视图作出几何体的直观图是解答的关键,考查空间想象能力与计算能力,属于中等题.5、C【解析】∵(a+2b)·(a-3b)=-72,∴6、D【解析】

利用平面与平面平行的判定定理一一进行判断,可得正确答案.【详解】解:A选项,内有无穷多条直线都与平行,并不能保证平面内有两条相交直线与平面平行,这无穷多条直线可以是一组平行线,故A错误;B选项,直线,,且直线a不在内,也不在内,直线a可以是平行平面与平面的相交直线,故不能保证平面与平面平行,故B错误;C选项,直线,直线,且,,当直线,同样不能保证平面与平面平行,故C错误;D选项,内的任何一条直线都与平行,则内至少有两条相交直线与平面平行,故平面与平面平行;故选:D.【点睛】本题主要考查平面与平面平行的判断,解题时要认真审题,熟练掌握面与平面平行的判定定理,注意空间思维能力的培养.7、B【解析】

作出多面体的直观图,将各面的面积相加可得出该多面积的表面积.【详解】由三视图得知该几何体的直观图如下图所示:由直观图可知,底面是边长为的正方形,其面积为;侧面是等腰三角形,且底边长,底边上的高为,其面积为,且;侧面是直角三角形,且为直角,,,其面积为,,的面积为;侧面积为等腰三角形,底边长,,底边上的高为,其面积为.因此,该几何体的表面积为,故选:B.【点睛】本题考查几何体的三视图以及几何体表面积的计算,再利用三视图求几何体的表面积时,要将几何体的直观图还原,并判断出各个面的形状,结合图中数据进行计算,考查空间想象能力与计算能力,属于中等题.8、C【解析】

根据函数最小正周期可求得,由函数图象平移后为奇函数,可求得,即可得函数的解析式.再根据正弦函数的对称性判断①②,利用函数的单调区间判断③,由正弦函数的图象与性质判断④即可.【详解】函数的最小正周期是则,即向右平移个单位可得由为奇函数,可知解得因为所以当时,则对于①,当时,代入解析式可得,即点不为对称中心,所以①错误;对于②,当时带入的解析式可得,所以函数的图象关于直线对称,所以②正确;对于③,的单调递减区间为解得当时,单调递减区间为,而,所以函数在上是减函数,故③正确;对于④,当时,由正弦函数的图像与性质可知,,故④正确.综上可知,正确的为②③④故选:C【点睛】本题考查根据三角函数性质和平移变换求得解析式,再根据正弦函数的图像与性质判断选项,属于基础题.9、C【解析】

根据且,可得,,且,,根据不等式的性质可逐一作出判断.【详解】由且,可得,∴,且,,由此可得①当a=0时,不成立,②由,,则成立,③由,,可得成立,④由,若,则不成立,因此,一定成立的是②③,故选:C.【点睛】本题考查不等式的基本性质的应用,属于基础题.10、A【解析】解:因为等比数列{an}的前n项和为Sn,则Sn,S2n-Sn,S3n-S2n成等比,(Sn≠0)所以S6二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由递推公式可以求出,可以归纳出数列的周期,从而可得到答案.【详解】由,,.,可推测数列是以3为周期的周期数列.所以。故答案为:【点睛】本题考查数量的递推公式同时考查数列的周期性,属于中档题.12、【解析】

设缉私艇追上走私船所需要的时间为小时,根据各自的速度表示出与,由,利用余弦定理列出关于的方程,求出方程的解即可得到的值.【详解】解:设缉私艇上走私船所需要的时间为小时,则,,在中,,根据余弦定理知:,或(舍去),故缉私艇追上走私船所需要的时间为2小时.故答案为:.【点睛】本题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握正弦、余弦定理是解本题的关键,属于中档题.13、【解析】

首先要用诱导公式得到角的正弦值,根据角是第二象限的角得到角的余弦值,再用诱导公式即可得到结果.【详解】解:,又是第二象限角故,故答案为.【点睛】本题考查同角的三角函数的关系,本题解题的关键是诱导公式的应用,熟练应用诱导公式是解决三角函数问题的必备技能,属于基础题.14、【解析】

先利用累加法求出数列的通项公式,然后将数列的通项裂开,利用裂项求和法求出数列的前项和.【详解】当时,.所以,,,,,.上述等式全部相加得,.,因此,数列的前项和为,故答案为:.【点睛】本题考查累加法求数列通项和裂项法求和,解题时要注意累加法求通项和裂项法求和对数列递推公式和通项公式的要求,考查运算求解能力,属于中等题.15、【解析】

根据分段函数的解析式先求,再求即可.【详解】因为,所以.【点睛】本题主要考查了分段函数求值问题,解题的关键是将自变量代入相应范围的解析式中,属于基础题.16、【解析】

由三角形的面积公式得出,设,由可得出,利用基本不等式可求出的值,利用等号成立可得出、的值,再利用余弦利用可得出的值.【详解】由题意可得,解得,设,则,可得,由基本不等式可得,当且仅当时,取得最大值,,,由余弦定理得,解得.故答案为.【点睛】本题考查余弦定理解三角形,同时也考查了三角形的面积公式以及利用基本不等式求最值,在利用基本不等式求最值时,需要结合已知条件得出定值条件,同时要注意等号成立的条件,考查分析问题和解决问题的能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)选择C;(2)第4或第5年.【解析】

(1)根据已知求出三种树木六年末的高度,判断得解;(2)设为第年内树木生长的高度,先求出,设,则,.再利用分析函数的单调性,分析函数的图像得解.【详解】(1)由题意可知,A、B、C三种树木随着时间的增加,高度也在增加,6年末:A树木的高度为(米):B树木的高度为(米):C树木的高度为(米),所以选择C树木.(2)设为第年内树木生长的高度,则,所以,,.设,则,.令,因为在区间上是减函数,在区间上是增函数,所以当时,取得最小值,从而取得最大值,此时,解得,因为,,故的可能值为3或4,又,,即.因此,种植后第4或第5年内该树木生长最快.【点睛】本题主要考查等差数列和等比数列求和,考查函数的图像和性质的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于难题.18、(1);(2);(3).【解析】

(1)根据正弦函数的对称性,可得函数的解析式,再由函数图象的平移变换法则,可得函数的解析式;(2)将不等式进行转化,得到函数在[0,t]上为增函数,结合函数的单调性进行求解即可;(3)求出的解析式,结合交点个数转化为周期关系进行求解即可.【详解】(1)因为函数,其图象的一个对称中心是,所以有,的图象向左平移个单位长度后得到函数的图象.所以;(2)由,构造新函数为,由题意可知:任意,当时,都有,说明函数在上是单调递增函数,而的单调递增区间为:,而,所以单调递增区间为:,因此实数的最大值为:;(3),其最小正周期,而区间的长度为,直线的交点个数不少于6个且不多于10个,则,且,解得:.【点睛】本题考查了正弦型函数的对称性和图象变换,考查了正弦型函数的单调性,考查了已知两函数图象的交点个数求参数问题,考查了数学运算能力.19、(1)证明见解析(2)是等比数列,详见解析(3)答案不唯一,具体见解析【解析】

(1)由即可证明;(2)证明即可(3)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论