




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
七年级下册期末数学综合检测试卷含答案学校:__________姓名:__________班级:__________考号:__________一、选择题1.下列计算正确的是()A. B.C. D.2.如图所示,下列四个选项中不正确的是()A.与是同旁内角 B.与是内错角C.与是对顶角 D.与是邻补角3.若关于x,y的方程组的解是,则方程组的解是()A. B. C. D.4.若a>b,则下列结论正确的是()A.a+2<b+2 B.5﹣a<5﹣b C. D.﹣3a>﹣3b5.若关于x的不等式组的解集为x<3,则k的取值范围为()A.k>1 B.k<1 C.k≥1 D.k≤16.下列命题中的真命题是()A.同位角相等 B.直角三角形的两个锐角互余C.若,则 D.如果,那么7.定义一种对正整数n的“F”运算:①当n为奇数时,结果为;②当n为偶数时,结果为;(其中k是使为奇数的正整数),并且运算可以重复进行,例如,取.则:若,则第2021次“F运算”的结果是()A.68 B.78 C.88 D.988.如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B的度数为()A.75° B.72° C.78° D.82°二、填空题9.计算(﹣2x3y2)3•4xy2=_____.10.命题“如果,那么”是______命题.(填“真”或“假”)11.若某个正多边形的一个内角为,则这个正多边形的内角和为_________.12.观察下列等式:12-3×1=1×(1-3);22-3×2=2×(2-3);32-3×3=3×(3-3);42-3×4=4×(4-3);…,则第n个等式可表示为_____.13.已知是方程组的解,则=____________14.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥(图中虚线),若荷塘周长为900m,且桥宽忽略不计,则小桥的总长为_______m.15.若某个正多边形的每一个外角都等于其相邻内角的,则这个正多边形的边数是_____.16.已知:如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=76°,∠C=64°,则∠DAE的度数是__________.三、解答题17.计算:;18.因式分解(1)(2)19.解方程组:(1)(2).20.解不等式组,并把解集在数轴上表示出来.21.如图,∠1=∠BCE,∠2+∠3=180°.(1)判断AC与EF的位置关系,并说明理由;(2)若CA平分∠BCE,EF⊥AB于F,∠1=72°,求∠BAD的度数.22.国家发改委、工业和信息化部、财政部公布了“节能产品惠民工程”,公交公司积极响应将旧车换成节能环保公交车,计划购买A型和B型两种环保型公交车10辆,其中每台的价格、年载客量如表:A型B型价格(万元/台)xy年载客量/万人次60100若购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元.(1)求x、y的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保10辆公交车在该线路的年载客量总和不少于680万人次,问有哪几种购买方案?(3)在(2)的条件下,哪种方案使得购车总费用最少?最少费用是多少万元?23.若不等式(组)①的解集中的任意解都满足不等式(组)②,则称不等式(组)①被不等式(组)②覆盖.特别地,若一个不等式(组)无解,则它被其他任意不等式(组)覆盖.例如:不等式被不等式覆盖;不等式组无解,被其他任意不等式(组)覆盖.(1)下列不等式(组)中,能被不等式覆盖的是______.a.b.c.d.(2)若关于的不等式被覆盖,求的取值范围.(3)若关于的不等式被覆盖,直接写出的取值范围:_____.24.已知,,点为射线上一点.(1)如图1,写出、、之间的数量关系并证明;(2)如图2,当点在延长线上时,求证:;(3)如图3,平分,交于点,交于点,且:,,,求的度数.25.已知:如图1直线、被直线所截,.(1)求证:;(2)如图2,点E在,之间的直线上,P、Q分别在直线、上,连接、,平分,平分,则和之间有什么数量关系,请直接写出你的结论;(3)如图3,在(2)的条件下,过P点作交于点H,连接,若平分,,求的度数.【参考答案】一、选择题1.C解析:C【分析】分别利用合并同类项、同底数幂的乘法、除法以及幂的乘方法则进行计算,即可得出结论.【详解】解:A、,故此选项计算错误,不符合题意;B、,故此选项计算错误,不符合题意;C、,,故此选项计算正确,符合题意;D、,故此选项计算错误,不符合题意;故选:C.【点睛】此题考查了合并同类项、同底数幂的乘法、除法及幂的乘方的运算,熟练掌握相关运算法则并能灵活运用其准确求解是解题的关键.2.B解析:B【分析】根据同旁内角,内错角,对顶角,邻补角的定义逐项分析.【详解】A.与是同旁内角,故该选项正确,不符合题意;B.与不是内错角,故该选项不正确,符合题意;C.与是对顶角,故该选项正确,不符合题意;D.与是邻补角,故该选项正确,不符合题意;故选B.【点睛】本题考查了同旁内角,内错角,对顶角,邻补角的定义,理解定义是解题的关键.两条直线被第三条直线所截,如果两个角分别在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角.两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的两侧,那么这两个角叫做内错角.两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的同旁,那么这两个角叫做同旁内角.两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.3.A解析:A【分析】通过观察所给方程组的关系可得,求出、即可.【详解】解:∵关于x,y的方程组的解是,∴,又∵,∴,解得,方程组的解为,故选:A.【点睛】本题考查二元一次方程组的解,解题的关键是要知道两个方程组之间的关系.4.B解析:B【分析】根据不等式的基本性质直接进行排除选项即可.【详解】解:A、∵a>b,∴a+2>b+2,原变形错误,故本选项不符合题意;B、∵a>b,∴﹣a<﹣b,∴5﹣a<5﹣b,原变形正确,故本选项符合题意;C、∵a>b,∴,原变形错误,故本选项不符合题意;D、∵a>b,∴﹣3a<﹣3b,原变形错误,故本选项不符合题意;故选:B.【点睛】本题主要考查不等式的基本性质,熟练掌握不等式的性质是解题的关键.5.C解析:C【分析】求出原不等式组的解集为,再利用已知解集为,可知,即可求出k的取值范围.【详解】由,解得:,又∵不等式组的解集为,∴,∴.故选C【点睛】本题考查解不等式组.根据不等式组的解集列出关于k的不等式是解答本题的关键.6.B解析:B【分析】利用平行线的性质、直角三角形的性质、平方的意义及绝对值的意义分别判断后即可确定正确的选项.【详解】解:A、两直线平行,同位角相等,故原命题错误,是假命题,不符合题意;B、直角三角形的两个锐角互余,正确,是真命题,符合题意;C、若a2=9,则a=±3,故原命题错误,不符合题意;D、如果|a|=|b|,那么a=±b,故原命题错误,不符合题意;故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、直角三角形的性质、平方的意义及绝对值的意义等知识,难度不大.7.D解析:D【分析】根据题意,可以写出前几次的运算结果,从而可以发现数字的变化特点,然后即可写出第2021次“F运算”的结果.【详解】解:本题提供的“F运算”,需要对正整数n分情况(奇数、偶数)循环计算,由于n=49为奇数应先进行F①运算,即3×49+5=152(偶数),需再进行F②运算,即152÷23=19(奇数),再进行F①运算,得到3×19+5=62(偶数),再进行F②运算,即62÷21=31(奇数),再进行F①运算,得到3×31+5=98(偶数),再进行F②运算,即98÷21=49,再进行F①运算,得到3×49+5=152(偶数),…,即第1次运算结果为152,…,第4次运算结果为31,第5次运算结果为98,…,可以发现第6次运算结果为49,第7次运算结果为152,则6次一循环,2021÷6=336…5,则第2021次“F运算”的结果是98.故选:D.【点睛】本题考查了整式的运算能力,既渗透了转化思想、分类思想,又蕴涵了次数、结果规律探索问题,检测学生阅读理解、抄写、应用能力.8.C解析:C【分析】在图①的△ABC中,根据三角形内角和定理,可求得∠B+∠C=150°;结合折叠的性质和图②③可知:∠B=3∠CBD,即可在△CBD中,得到另一个关于∠B、∠C度数的等量关系式,联立两式即可求得∠B的度数.【详解】在△ABC中,∠A=30°,则∠B+∠C=150°…①;根据折叠的性质知:∠B=3∠CBD,∠BCD=∠C;在△CBD中,则有:∠CBD+∠BCD=180°-82°,即:∠B+∠C=98°…②;①-②,得:∠B=52°,解得∠B=78°.故选:C.【点睛】此题主要考查的是图形的折叠变换及三角形内角和定理的应用,能够根据折叠的性质发现∠B和∠CBD的倍数关系是解答此题的关键.二、填空题9.﹣32x10y8【详解】试题分析:分析:先算乘方,再算乘法(﹣2x3y2)3=(﹣2)3(x3)3(y2)3=﹣8x9y6,所以(﹣2x3y2)3•4xy2=(﹣8x9y6)•4xy2=﹣32x10y8.解:(﹣2x3y2)3•4xy2=(﹣8x9y6)•4xy2=﹣32x10y8点评:本题考查整式的乘法混合运算,按照运算顺序先算乘方再算乘法.10.真【分析】根据真假命题的概念直接进行解答即可.【详解】由,则有,所以命题“如果,那么”是真命题;故答案为:真.【点睛】本题主要考查命题,正确理解真假命题是解题的关键.11.540°【分析】通过内角求出外角,利用多边形外角和360度,用360°除以外角度数即可求出这个正多边形的边数即可解答.【详解】解:∵正多边形的每个内角都相等,且为108°,∴其一个外角度数为180°-108°=72°,则这个正多边形的边数为360÷72=5,∴这个正多边形的内角和为108°×5=540°.故答案为:540°.【点睛】本题主要考查了多边形的内角与外角公式,求正多边形的边数时,内角转化为外角,利用外角和360°知识求解更简单.12.【分析】由于每个等式第一个数值由1的平方到2的平方逐渐增加,接着减去的是3×1、3×2等,等式右边是前面数字的一种组合,由此即可得到第n个等式.【详解】解:∵12-3×1=1×(1-3);22-3×2=2×(2-3);32-3×3=3×(3-3);42-3×4=4×(4-3);……∴第n个等式可表示为n2-3n=n(n-3).故答案为:.【点睛】此题主要考查了因式分解的应用,首先通过观察得到等式隐含的规律,然后利用规律即可解决问题.13.【分析】把代入到方程组中得到关于的方程组,求出的值,再求出的值即可.【详解】解:∵是方程组的解,∴,解得:,∴,故答案为:.【点睛】本难主要考查了二元一次方程组的解,解二元一次方程组和求代数式的值,明白解的定义和正确求出的值是解决此题的关键.14.450【分析】根据图形得出荷塘中小桥的总长为矩形的长与宽的和,进而得出答案.【详解】解:∵荷塘周长为900m,∴小桥总长为:900÷2=450(m).故答案为:450.【点睛】此题主要考查了生活中的平移现象,得出荷塘中小桥的总长为矩形的长与宽的和是解题的关键.15.8【分析】根据每个外角都等于相邻内角的,并且外角与相邻的内角互补,就可求出外角的度数;根据外角度数就可求得边数.【详解】解:设外角是x度,则相邻的内角是3x度.根据题意得:x+3x=180解析:8【分析】根据每个外角都等于相邻内角的,并且外角与相邻的内角互补,就可求出外角的度数;根据外角度数就可求得边数.【详解】解:设外角是x度,则相邻的内角是3x度.根据题意得:x+3x=180,解得x=45.则多边形的边数是:360°÷45°=8.故答案为:8.【点睛】本题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握方程思想的应用是解题关键.16.12°【分析】根据∠DAE=∠EAC-∠CAD,求出∠EAC,∠CAD即可.【详解】解:∵AE平分∠BAC,∴∠CAE=∠CAB=×76°=38°,∵AD⊥BC,∴∠ADC=90°,解析:12°【分析】根据∠DAE=∠EAC-∠CAD,求出∠EAC,∠CAD即可.【详解】解:∵AE平分∠BAC,∴∠CAE=∠CAB=×76°=38°,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°-∠C=90°-64°=26°,∴∠DAE=∠EAC-∠CAD=38°-26°=12°,故答案为:12°.【点睛】本题考查了三角形内角和定理,角平分线的定义,三角形的高等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题17.(1);(2)【分析】(1)直接利用整式的混合运算法则计算得出答案;(2)利用负整数指数幂,零指数幂和积的乘方的逆用计算法则求解即可.【详解】解:(1)原式;(2)原式【点睛】解析:(1);(2)【分析】(1)直接利用整式的混合运算法则计算得出答案;(2)利用负整数指数幂,零指数幂和积的乘方的逆用计算法则求解即可.【详解】解:(1)原式;(2)原式【点睛】此题主要考查了整式的混合运算,负整数指数幂,零指数幂和积的乘方的逆用,正确掌握相关运算法则是解题关键.18.(1);(2)【分析】(1)根据公式法因式分解即可;(2)先用十字相乘法分解因式,再用平方差公式分解因式.【详解】(1);(2).【点睛】本题考查了十字相乘法和公式法因式分解,掌握解析:(1);(2)【分析】(1)根据公式法因式分解即可;(2)先用十字相乘法分解因式,再用平方差公式分解因式.【详解】(1);(2).【点睛】本题考查了十字相乘法和公式法因式分解,掌握因式分解的方法是解题的关键.19.(1);(2)【分析】(1)方程组利用代入消元法求解即可;(2)方程组利用加减消元法求解即可.【详解】解:(1),将①代入②得:,解得:,代入①中,解得:,∴方程组的解为:;(2解析:(1);(2)【分析】(1)方程组利用代入消元法求解即可;(2)方程组利用加减消元法求解即可.【详解】解:(1),将①代入②得:,解得:,代入①中,解得:,∴方程组的解为:;(2),①+②得:,解得:,代入①中,解得:,∴方程组的解为:.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.4<x<5,数轴见解析【分析】先根据不等式的性质分别解不等式求解集,然后取两个解集的公共部分,最后利用数轴上解集表示方法在数轴上表示不等式组的解集.【详解】解:解不等式x+3>2(x﹣1),解析:4<x<5,数轴见解析【分析】先根据不等式的性质分别解不等式求解集,然后取两个解集的公共部分,最后利用数轴上解集表示方法在数轴上表示不等式组的解集.【详解】解:解不等式x+3>2(x﹣1),得:x+3>2x-2,x-2x>-2-3,-x>-5,x<5,解不等式,得:x-1>3,x>4,则不等式组的解集为4<x<5,将解集表示在数轴上如下:【点睛】本题主要考查解不等式组和解集在数轴上的表示,解决本题的关键是要熟练掌握解不等式组的方法和解集在数轴上的表示方法.21.(1)AC∥EF,见解析;(2)54°【分析】(1)由∠1=∠BCE,可得到直线AD与EC平行,可得到∠2与∠4间关系,再由∠2+∠3=180°判断AC与EF的位置关系;(2)由(1)的结论及解析:(1)AC∥EF,见解析;(2)54°【分析】(1)由∠1=∠BCE,可得到直线AD与EC平行,可得到∠2与∠4间关系,再由∠2+∠3=180°判断AC与EF的位置关系;(2)由(1)的结论及垂直可得到∠BAC的度数,再由平行线及角平分线的性质得到∠2的度数,利用角的和差关系可得结论.【详解】解:(1)AC∥EF.理由:∵∠1=∠BCE,∴AD∥CE.∴∠2=∠4.∵∠2+∠3=180°,∴∠4+∠3=180°.∴EF∥AC.(2)∵AD∥EC,CA平分∠BCE,∴∠ACD=∠4=∠2.∵∠1=72°,∴∠2=36°.∵EF∥AC,EF⊥AB于F,∴∠BAC=∠E=90°.∴∠BAD=∠BAC﹣∠2=54°.【点睛】本题考查了平行线的性质和判定、角平分线的性质及垂直的性质等知识点,综合性较强,掌握平行线的性质和判定是解题的关键.22.(1);(2)有三种购车方案,方案一:购买A型公交车6辆,购买B型公交车4辆;方案二:购买A型公交车7辆,购买B型公交车3辆;方案三:购买A型公交车8辆,购买B型公交车2辆;(3)总费用最少的方案是解析:(1);(2)有三种购车方案,方案一:购买A型公交车6辆,购买B型公交车4辆;方案二:购买A型公交车7辆,购买B型公交车3辆;方案三:购买A型公交车8辆,购买B型公交车2辆;(3)总费用最少的方案是购买A型公交车8辆,购买B型公交车2辆,购车总费用为1100万元.【分析】(1)根据“购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元”列出二元一次方程组求解可得;(2)购买A型环保公交车m辆,则购买B型环保公交车(10﹣m)辆,根据“总费用不超过1200万元、年载客量总和不少于680万人次”列一元一次不等式组求解可得;(3)设购车总费用为w万元,根据总费用的数量关系得出w=100m+150(10﹣m)=﹣50m+1500,再进一步利用一次函数的性质求解可得.【详解】(1)由题意,得,解得;(2)设购买A型环保公交车m辆,则购买B型环保公交车(10﹣m)辆,由题意,得,解得6≤m≤8,∵m为整数,∴有三种购车方案方案一:购买A型公交车6辆,购买B型公交车4辆;方案二:购买A型公交车7辆,购买B型公交车3辆;方案三:购买A型公交车8辆,购买B型公交车2辆.(3)设购车总费用为w万元则w=100m+150(10﹣m)=﹣50m+1500,∵﹣50<0,6≤m≤8且m为整数,∴m=8时,w最小=1100,∴购车总费用最少的方案是购买A型公交车8辆,购买B型公交车2辆,购车总费用为1100万元.【点睛】本题主要考查一元一次不等式组和二元一次方程的应用,理解题意,找到题目蕴含的数量关系是解题的关键.23.(1)c,d;(2);(3)或.【分析】(1)根据题意分别解出不等式(组),再判断a,b,c,d是否符合题意;(2)根据题意,列出关于m的不等式,即可求解;(3)分两种情况讨论,①不等式组无解析:(1)c,d;(2);(3)或.【分析】(1)根据题意分别解出不等式(组),再判断a,b,c,d是否符合题意;(2)根据题意,列出关于m的不等式,即可求解;(3)分两种情况讨论,①不等式组无解;②不等式有解,满足题目中的定义,据此列出不等式组,即可求解.【详解】(1)由,解得:,故a不符合题意;由,解得:,故b不符合题意;由,解得:,故c符合题意;由解得:,无解,故d符合题意;故选:c,d;(2)由,解得:,∵关于的不等式被覆盖,∴,即,故填:;(3)①无解,即:,解得:;②有解,即,解得:,且不等式被覆盖,即,解得:,∴;综上所述,或,故填:或.【点睛】本题考查解一元一次不等式(组),解题关键是明确题意,根据题意列出不等式(组).24.(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H解析:(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=α+5°,再根据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,求得α=70°,即可根据三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五租房协议合同书-@-4
- 二零二五版物业卫生清洁服务合同书
- 二零二五全新碎石料购销合同
- 多个抵押人反担保合同
- 二零二五体育赛事赞助协议合同
- 二零二五版知识产权贯标辅导合同
- 餐饮聘用合同二零二五年
- 劳务安全协议书范例二零二五年
- 2024年东港市市属事业单位考试真题
- 2025年等离子体沉积和刻蚀设备合作协议书
- 红楼梦二十三回内容概括
- 急诊科的喉头水肿处理
- 劳务投标技术标
- 专车接送服务租赁合同
- 闪耀明天 二声部合唱简谱
- 国开2023秋《人文英语4》期末复习写作练习参考答案
- 急性髓系白血病临床路径(2016年版)
- 水表及阀门安装施工方案
- 23S519 小型排水构筑物(带书签)
- 招投标专员绩效考核表
- 2023上海松江区初三二模数学试题及答案
评论
0/150
提交评论