版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年河南省开封市县第一高级中学高一数学文摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为f(x)=(A,c为常数).已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么c和A的值分别是(
)A.75,25
B.75,16
C.60,25
D.60,16参考答案:D由题意可得:f(A)==15,所以c=15而f(4)==30,可得出=30故=4,可得A=16从而c=15=60故答案为:D
2.已知是第二象限角,那么是(
)A.第一象限角
B.第二象限角
C.第二或第四象限角
D.第一或第三象限角参考答案:D3.(5分)函数y=x2﹣4ax+1在区间[﹣2,4]上单调递增函数,则实数a的取值范围是() A. (﹣∞,2] B. (﹣∞,﹣1] C. [2,+∞) D. [﹣1,+∞)参考答案:B考点: 二次函数的性质.专题: 函数的性质及应用.分析: 根据二次函数y=x2﹣4ax+1的图象与性质,结合题意,得出不等式2a≤﹣2,求出解集即可.解答: ∵函数y=x2﹣4ax+1的图象是抛物线,且开口向上,对称轴是x=2a;在对称轴的右侧,函数是单调增函数;∴函数y在区间[﹣2,4]上是单调递增函数时,2a≤﹣2,解得a≤﹣1;∴实数a的取值范围是(﹣∞,﹣1].故选:B.点评: 本题考查了二次函数的图象与性质的应用问题,是基础题目.4.实数x,y满足条件,则3x+5y的最大值为()A.12 B.9 C.8 D.3参考答案:A【考点】7C:简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【解答】解:作出不等式对应的平面区域(阴影部分),设z=3x+5y,得y=,平移直线y=,由图象可知当直线y=,经过点C(4,0)时,直线y=的截距最大,此时z最大.此时z的最大值为z=3×4﹣0=12,故选:A.5.在锐角△ABC中,a=1,B=2A,则b的取值范围是()A. B. C. D.参考答案:B【考点】HP:正弦定理.【分析】由条件可得<3A<π,且
0<2A<,故<A<,<cosA<,由正弦定理可得b=2cosA,从而得到b的取值范围.【解答】解:在锐角△ABC中,a=1,∠B=2∠A,∴<3A<π,且
0<2A<,故<A<,故
<cosA<.由正弦定理可得=,∴b=2cosA,∴<b<,故选:B.6.一次掷两颗骰子,得到的点数为m和n,则关于x的方程x2+(m+n)x+4=0有实数根的概率是________.参考答案:略7.在区间[﹣π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax﹣b2+π有零点的概率为()A.B.C.D.参考答案:B【考点】等可能事件的概率.【分析】先判断概率的类型,由题意知本题是一个几何概型,由a,b使得函数f(x)=x2+2ax﹣b2+π有零点,得到关于a、b的关系式,写出试验发生时包含的所有事件和满足条件的事件,做出对应的面积,求比值得到结果.【解答】解:由题意知本题是一个几何概型,∵a,b使得函数f(x)=x2+2ax﹣b2+π有零点,∴△≥0∴a2+b2≥π试验发生时包含的所有事件是Ω={(a,b)|﹣π≤a≤π,﹣π≤b≤π}∴S=(2π)2=4π2,而满足条件的事件是{(a,b)|a2+b2≥π},∴s=4π2﹣π2=3π2,由几何概型公式得到P=,故选B.8.下列函数中,最小值为4的是
()A.
B.C.
D.参考答案:C9.若函数f(x)=x3+x2﹣2x﹣2的一个正数零点附近的函数值用二分法计算,其参考数据如下:f(1)=﹣2f(1.5)=0.625f(1.25)=﹣0.984f(1.375)=﹣0.260f(1.4375)=0.162f(1.40625)=﹣0.054那么方程x3+x2﹣2x﹣2=0的一个近似根(精确到0.1)为(
)A.1.2 B.1.3 C.1.4 D.1.5参考答案:C【考点】二分法求方程的近似解.【专题】应用题.【分析】由图中参考数据可得f(1.43750>0,f(1.40625)<0,又因为题中要求精确到0.1可得答案.【解答】解:由图中参考数据可得f(1.43750)>0,f(1.40625)<0,又因为题中要求精确到0.1,所以近似根为1.4故选
C.【点评】本题本题主要考查用二分法求区间根的问题,属于基础题型.在利用二分法求区间根的问题上,如果题中有根的精确度的限制,在解题时就一定要计算到满足要求才能结束.10.已知函数f(x)=,则f(﹣2)=()A.﹣4 B.4 C.8 D.﹣8参考答案:B【考点】函数的值.【分析】由x<0时,f(x)=x2,把x=﹣2直接代入即可求解函数值【解答】解:∵x<0时,f(x)=x2∴f(﹣2)=4故选B二、填空题:本大题共7小题,每小题4分,共28分11.给出下列命题:①函数是奇函数;②存在实数,使得;
③若是第一象限角且,则;④是函数的一条对称轴方程;⑤函数的图像关于点成中心对称.把你认为正确的命题的序号都填在横线上______________.参考答案:(1)、(4)略12.已知函数f(x)=sinx(x∈R),则下列四个说法:①函数g(x)=是奇函数;②函数f(x)满足:对任意x1,x2∈[0,π]且x1≠x2都有f()<[f(x1)+f(x2)];③若关于x的不等式f2(x)﹣f(x)+a≤0在R上有解,则实数a的取值范围是(﹣∞,];④若关于x的方程3﹣2cos2x=f(x)﹣a在[0,π]恰有4个不相等的解x1,x2,x3,x4;则实数a的取值范围是[﹣1,﹣),且x1+x2+x3+x4=2π;其中说法正确的序号是.参考答案:③④【考点】命题的真假判断与应用;正弦函数的图象.【专题】综合题;函数思想;综合法;三角函数的图像与性质.【分析】①求出函数g(x)的定义域,由定义域不关于原点对称判断函数为非奇非偶函数;②利用三角函数的和差化积判断;③利用换元法,把不等式转化为一元二次不等式求解;④利用换元法,把函数转化为一元二次函数进行零点判断.【解答】解:对于①,由f(x)﹣1≠,得f(x)≠1,∴sinx≠1,即,则函数g(x)=的定义域为{x|},函数为非奇非偶函数,故①错误;对于②,对任意x1,x2∈[0,π]且x1≠x2,有f()=sin,[f(x1)+f(x2)]==≤sin,故<②错误;对于③,令f(x)=sinx=t(﹣1≤t≤1),关于x的不等式f2(x)﹣f(x)+a≤0在R上有解,即t2﹣t+a≤0在[﹣1,1]上有解,则,即a,∴实数a的取值范围是(﹣∞,],故③正确;对于④,关于x的方程3﹣2cos2x=f(x)﹣a在[0,π]恰有4个不相等的解x1,x2,x3,x4,即2sin2x﹣sinx+1+a=0在[0,π]恰有4个不相等的解x1,x2,x3,x4,∵x∈[0,π],∴sinx∈[0,1],设t=sinx,则t∈[0,1],2t2﹣t+1+a=0.由于[0,1)内的一个t值对应了[0,π]内的2个x值,则由题意可得,关于t的方程f(t)=2t2﹣t+1+a=0在[0,1)上有两个不等根.则,解得﹣1,此时x1+x2+x3+x4=2π,故④正确.∴正确的命题是③④.故答案为:③④.【点评】本题考查命题的真假判断与应用,考查了与正弦函数有关的复合函数的性质判断,考查了复合函数的零点判断,是中档题.13.已知变量满足条件,若目标函数仅在点(3,3)处取得最小值,则的取值范围是___________________.参考答案:
;略14.(4分)设{an}是等差数列,若a2=3,a7=13,则数列{an}前8项的和为
.参考答案:64考点:等差数列的前n项和;等差数列的性质.专题:计算题.分析:利用等差数列的前n项和公式,结合等差数列的性质a2+a7=a1+a8求解.解答:在等差数列{an}中,若m+n=k+l,则am+an=ak+al.所以a2+a7=a1+a8=16,所以s8=×8=64.故答案为64.点评:熟练掌握等差数列的性质:在等差数列{an}中,若m+n=k+l,则am+an=ak+al.特例:若m+n=2p(m,n,p∈N+),则am+an=2ap.15.函数的单调递减区间为________.参考答案:略16.函数的图象必过定点,则点的坐标为___________.参考答案:试题分析:由已知可得,故定点为.考点:函数图象的定点.【方法点晴】本题主要考查函数图象的定点,属于中等题型.解决本题时可以先由函数采用图象平移法(即按过定点,再将向右平移个单位即得函数定点,亦可以由,得函数的定点为.因此解决此类题型有以下两种方法:1、图象平移法;2、直接法.17.若一次函数f(x)=ax+b有一个零点1,则函数g(x)=bx2﹣ax的零点是.参考答案:0,﹣1【考点】函数零点的判定定理.【分析】由函数f(x)=ax+b有一个零点1,可得:a+b=0,(a≠0),代入方程bx2﹣ax=0,可得答案.【解答】解:∵函数f(x)=ax+b有一个零点1,∴a+b=0,即b=﹣a,(a≠0),则方程bx2﹣ax=0可化为:﹣ax2﹣ax=0,解得:x=﹣1,或x=0,故函数g(x)=bx2﹣ax的零点bx2﹣ax=0的根是0,﹣1,故答案为0,﹣1三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知a>0且a≠1,函数,(1)求函数f(x)的定义域;(2)将函数y=f(x)的图象向右平移两个单位后得到函数y=g(x)的图象,若实数x满足g(x)≥0,求x的取值范围.参考答案:【考点】函数与方程的综合运用;函数的定义域及其求法.【分析】(1)利用对数的真数大于0,列出不等式组求解即可得到函数的定义域.(2)利用函数的图象变换,以及对数的性质列出不等式求解即可.【解答】(本小题满分16分)解:(1)要使函数有意义,则…解得x>﹣1;所以函数f(x)的定义域为(﹣1,+∞)…(2)因为函数y=g(x)的图象可由函数y=f(x)的图象向右平移两个单位后得到,所以g(x)=f(x﹣2)即g(x)=loga(x﹣1)﹣loga(1+x),…又因为g(x)≥0,所以loga(x﹣1)≥loga(1+x),…当a>1时,则,解得x∈?;…当0<a<1时,则,解得x>1…综上:当a>1时,x的取值范围为?;当0<a<1时,x的取值范围为(1,+∞)…19.函数是定义在(﹣1,1)上的奇函数,且.(1)确定函数f(x)的解析式;(2)试判断f(x)在(﹣1,1)的单调性,并予以证明;(3)若f(t﹣1)+f(t)<0,求实数t的取值范围.参考答案:【考点】奇偶性与单调性的综合.【专题】综合题;函数的性质及应用.【分析】(1)由题意可得,f(﹣x)=﹣f(x),代入可求b,然后由可求a,进而可求函数解析式(2)对函数求导可得,f′(x)=,结合已知x的范围判断导函数的正负即可判断函数f(x)在(﹣1,1)上的单调性(3)由已知可得f(t﹣1)<﹣f(t)=f(﹣t),结合函数在(﹣1,1)上单调递增可求t的范围【解答】(1)解:∵函数是定义在(﹣1,1)上的奇函数,∴f(﹣x)=﹣f(x)即∴﹣ax+b=﹣ax﹣b∴b=0∵∴∴a=1∴(2)证明:∵f′(x)=∵﹣1<x<1时,>0∴f(x)在(﹣1,1)上是增函数(没有学习导数的也可利用函数的单调性的定义)(3)解:∵f(t﹣1)+f(t)<0,且函数为奇函数∴f(t﹣1)<﹣f(t)=f(﹣t),由(2)知函数在(﹣1,1)上单调递增∴﹣1<t﹣1<﹣t<1∴【点评】本题主要考查了奇函数的定义的应用及待定系数求解函数的解析式,及函数的单调性在不等式的求解中的应用20.一个有穷等比数列的首项为,项数为偶数,如果其奇数项的和为,偶数项的和为,求此数列的公比和项数。参考答案:解:设此数列的公比为,项数为,则∴项数为
略21.某市司法部门为了宣传《宪法》举办法律知识问答活动,随机对该市18~68岁的人群抽取一个容量为n的样本,并将样本数据分成五组:[18,28),[28,38),[38,48),[48,58),[58,68),再将其按从左到右的顺序分别编号为第1组,第2组,…,第5组,绘制了样本的频率分布直方图;并对回答问题情况进行统计后,结果如下表所示.组号分组回答正确的人数回答正确的人数占本组的比例第1组[18,28)50.5第2组[28,38)18a第3组[38,48)270.9第4组[48,58)x0.36第5组[58,68)30.2
(1)分别求出a,x的值;(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.参考答案:(1)第1组人数5÷0.5=10,所以n=10÷0.1=100,…第2组频率为:0.2,人数为:100×0.2=20,所以a=18÷20=0.9,…第4组人数100×0.25=25,所以x=25×0.36=9,…(2)第2,3,4组回答正确的人的比为18:27:9=2:3:1,所以第2,3,4组每组应各依次抽取2人,3人,1人.…(3)记“所抽取的人中第2组至少有1人获得幸运奖”为事件A,抽取的6人中,第2组的设为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 金融知识普及内容
- 青春期艾滋病教育方案
- 幼师实习自我鉴定(集合15篇)
- 老师个人工作总结怎么写
- 竞聘安全演讲稿汇编八篇
- 药厂实习报告15篇
- 防溺水安全知识主题教育138
- 2021年普通员工个人年终总结5篇
- 母亲节活动总结(15篇)
- 物流类实习报告模板锦集5篇
- 2024-2030年中国建筑施工行业发展状况规划分析报告
- 2025年1月“八省联考”考前猜想卷英语试题01 含解析
- 企业行政总监个人简历范文
- 2024版智能水务管理系统设计与施工合同3篇
- 冬季物业安全管理培训
- 鲁迅先生的生平及其背景
- 2025年1月“八省联考”考前猜想卷(含答案解析)
- 2024年度餐饮业智能点餐系统合同
- GB/T 11981-2024建筑用轻钢龙骨
- 修大棚合同范例
- 新时代中国特色社会主义理论与实践学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论