2022年山东省聊城市张大屯中学高一数学文上学期摸底试题含解析_第1页
2022年山东省聊城市张大屯中学高一数学文上学期摸底试题含解析_第2页
2022年山东省聊城市张大屯中学高一数学文上学期摸底试题含解析_第3页
2022年山东省聊城市张大屯中学高一数学文上学期摸底试题含解析_第4页
2022年山东省聊城市张大屯中学高一数学文上学期摸底试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年山东省聊城市张大屯中学高一数学文上学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设a,b,c都是正数,且3a=4b=6c,那么(

)A.=+ B.=+ C.=+ D.=+参考答案:B【考点】指数函数综合题.【专题】计算题.【分析】利用与对数定义求出a、b、c代入到四个答案中判断出正确的即可.【解答】解:由a,b,c都是正数,且3a=4b=6c=M,则a=log3M,b=log4M,c=log6M代入到B中,左边===,而右边==+==,左边等于右边,B正确;代入到A、C、D中不相等.故选B.【点评】考查学生利用对数定义解题的能力,以及换底公式的灵活运用能力.2.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=x+1 B.y=﹣x2+1 C.y=|x|+1 D.y=1﹣参考答案:C【考点】奇偶性与单调性的综合.【分析】根据基本初等函数的单调性、奇偶性,逐一分析答案中函数在(0,+∞)上的单调性和奇偶性,可得答案.【解答】解:A、y=x+1是非奇非偶函数,A不满足条件;B、y=﹣x2+1是偶函数,在(0,+∞)上是减函数,B不满足条件;C、y=|x|+1是定义域R上的偶函数,且在(0,+∞)上是增函数,C满足条件;D、是非奇非偶的函数,D不满足条件;故选:C.【点评】本题考查了函数的奇偶性与单调性,熟练掌握基本初等函数的单调性和奇偶性是解答的关键.3.已知方程的两根为,且,则的取值范围是

)A.

B.

C.

D.

参考答案:C4.已知A(1,0,2),B(1,﹣3,1),点M在z轴上且到A、B两点的距离相等,则M点坐标为()A.(﹣3,0,0) B.(0,﹣3,0) C.(0,0,﹣3) D.(0,0,3)参考答案:C【考点】两点间的距离公式.【专题】计算题.【分析】点M(0,0,z),利用A(1,0,2),B(1,﹣3,1),点M到A、B两点的距离相等,建立方程,即可求出M点坐标【解答】解:设点M(0,0,z),则∵A(1,0,2),B(1,﹣3,1),点M到A、B两点的距离相等,∴∴z=﹣3∴M点坐标为(0,0,﹣3)故选C.【点评】本题考查空间两点间的距离,正确运用空间两点间的距离公式是解题的关键.5.在用二次法求方程3x+3x﹣8=0在(1,2)内近似根的过程中,已经得到f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间()A.(1,1.25) B.(1.25,1.5) C.(1.5,2) D.不能确定参考答案:B【考点】二分法的定义.【分析】根据函数的零点存在性定理,由f(1)与f(1.5)的值异号得到函数f(x)在区间(1,1.5)内有零点,同理可得函数在区间(1.25,1.5)内有零点,从而得到方程3x+3x﹣8=0的根所在的区间.【解答】解:∵f(1)<0,f(1.5)>0,∴在区间(1,1.5)内函数f(x)=3x+3x﹣8存在一个零点又∵f(1.5)>0,f(1.25)<0,∴在区间(1.25,1.5)内函数f(x)=3x+3x﹣8存在一个零点,由此可得方程3x+3x﹣8=0的根落在区间(1.25,1.5)内,故选:B.6.函数是(

)A.奇函数

B.偶函数

C.既是奇函数又是偶函数

D.非奇非偶函数参考答案:A7.的定义域是

)A.

B.

C.

D.参考答案:A8.在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为,大正方形的面积是1,小正方形的面积是的值等于A.1

B.

C.

D.参考答案:B9.设是角的终边上的点,且,则的值等于A.

B.

C.

D.参考答案:B略10.在等差数列{an}中,若a1,a3,a4成等比数列,则该等比数列的公比为()A. B.1 C.1或 D.无法确定参考答案:C【考点】88:等比数列的通项公式.【分析】设等差数列{an}公差为d,由条件可得(a1+2d)2=a1(a1+3d),解得d=0或a1=﹣4d,在这两种情况下,分别求出公比的值.【解答】解:设等差数列{an}公差为d,∵a1,a3,a4成等比数列,∴a32=a1a4,即(a1+2d)2=a1(a1+3d),解得d=0或a1=﹣4d.若d=0,则等比数列的公比q=1.若a1=﹣4d,则等比数列的公比q===.故选:C.二、填空题:本大题共7小题,每小题4分,共28分11.若函数y=ax(a>0,a≠1)在区间x∈[0,1]上的最大值与最小值之和为3,则实数a的值为

.参考答案:2【考点】指数函数的单调性与特殊点.【专题】函数的性质及应用.【分析】本题要分两种情况进行讨论:①0<a<1,函数y=ax在[0,1]上为单调减函数,根据函数y=ax在[0,1]上的最大值与最小值和为3,求出a②a>1,函数y=ax在[0,1]上为单调增函数,根据函数y=ax在[0,1]上的最大值与最小值和为3,求出a即可.【解答】解:①当0<a<1时函数y=ax在[0,1]上为单调减函数∴函数y=ax在[0,1]上的最大值与最小值分别为1,a∵函数y=ax在[0,1]上的最大值与最小值和为3∴1+a=3∴a=2(舍)②当a>1时函数y=ax在[0,1]上为单调增函数∴函数y=ax在[0,1]上的最大值与最小值分别为a,1∵函数y=ax在[0,1]上的最大值与最小值和为3∴1+a=3∴a=2故答案为:2.【点评】本题考查了函数最值的应用,但解题的关键要注意对a进行讨论,属于基础题.12.数列……的一个通项an=

参考答案:13.若是第三象限的角,是第二象限的角,则是第

象限的角参考答案:一、或三

解析:

14.方程的实数解的个数是___________.参考答案:215.函数f(x)=的定义域是________________________.参考答案:16.已知函数y=f(x)的定义域为[-1,5],则在同一坐标系中,函数y=f(x)的图象与直线的交点个数为

参考答案:117.与直线2x+y-1=0关于点(1,0)对称的直线的方程是

参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2},C={x|x≥a﹣1}.(1)求A∩B;(2)若B∪C=C,求实数a的取值范围.参考答案:【考点】集合关系中的参数取值问题;交集及其运算.【分析】(1)化简集合B,然后求集合的交集.(2)利用B∪C=C,得到B?C,然后求实数a的取值范围.【解答】解:(1)由题意知,B={x|2x﹣4≥x﹣2}={x|x≥2}…所以A∩B={x|2≤x<3}…(2)因为B∪C=C,所以B?C…所以a﹣1≤2,即a≤3…19.已知函数(且)是定义在(-∞,+∞)上的奇函数.(1)求a的值;(2)当时,恒成立,求实数t的取值范围.参考答案:(1)2;(2).【分析】(1)根据奇函数的定义,,即可求出的值;(2)由(1)得函数的解析式,当时,,将不等式转化为.利用换元法:令,代入上式转化为时,恒成立,根据二次函数的图象与性质,即可求出的取值范围.【详解】解:(1)∵在上奇函数,即恒成立,∴.即,解得.(2)由(1)知,原不等式,即为.即.设,∵,∴,∵时,恒成立,∴时,恒成立,令函数,根据二次函数的图象与性质,可得,即解得.【点睛】本题考查奇函数的定义与性质,二次函数的图象与性质,考查不等式恒成立含参数的取值范围,考查转化思想和换元法20.已知:如图①,直线y=﹣x+与x轴、y轴分别交于A、B两点,两动点D、E分别从A、B两点同时出发向O点运动(运动到O点停止,如图②);对称轴过点A且顶点为M的抛物线y=a(x﹣k)2+h(a<0)始终经过点E,过E作EG∥OA交抛物线于点G,交AB于点F,连结DE、DF、AG、BG,设D、E的运动速度分别是1个单位长度/秒和个单位长度/秒,运动时间为t秒.(1)用含t代数式分别表示BF、EF、AF的长;(2)当t为何值时,四边形ADEF是菱形?(3)当△ADF是直角三角形,且抛物线的顶点M恰好在BG上时,求抛物线的解析式.参考答案:【考点】直线与抛物线的关系;二次函数的性质.【分析】(1)首先求出一次函数y=﹣x+与x轴、y轴的交点A、B的坐标,然后解直角三角形求出BF、EF、AF的长;(2)由EF∥AD,且EF=AD=t,则四边形ADEF为平行四边形,若四边形ADEF为菱形,则DE=AD=t,由DE=2DO列式求得t值;(3)当△ADF是直角三角形时,有两种情况,需分类讨论,①若∠ADF=90°时,如图,则有DF∥OB.然后由图形列式求出t值,再求出G的坐标,利用待定系数法求出直线BG的方程,求出点M的坐标,再利用顶点式求出抛物线的解析式;②若∠AFD=90°,采用①的思路进行求解.【解答】解:(1)在y=﹣x+中,分别令x=0、y=0求得A(1,0),B(0,),∴OA=1,OB=,∴tan,则∠OAB=60°,∴AB=2OA=2,∵EG∥OA,∴∠EFB=∠OAB=60°,∴EF==,BF=2EF=2t,EF=t,AF=AB﹣BF=2﹣2t(0≤t≤1);(2)在Rt△DOE中,EO=,DO=1﹣t,∴DE═,∵EF=t,AD=t,EG∥OA,∴四边形ADEF为平行四边形.若四边形ADEF为菱形,则有AD=DE,∴t=2(1﹣t),解之得t=,即当t=时四边形ADEF为菱形;(3)①当∠ADF=90°时,如图,则有DF∥OB.∴,即,∴t=,又由对称性可知EG=2AO=2,∴B(0,),E(0,),G(2,).设直线BG的解析式为y=kx+b,把B、G两点的坐标代入有:,解得.∴,令x=1,则y=,∴M(1,),设所求抛物线的解析式为,又E(0,),∴,解之得.故所求解析式为;②当∠AFD=90°时,如图,在Rt△ADF中,∠ADF=30°,由AD=t,∴AF=t,由(1)有AF=2﹣2t,∴,解得:t=.∴B(),E(0,),G(2,),设直线BG的解析式为y=mx+n,把B、G两点的坐标代入有:,解之得:.∴.令x=1,则y=,∴M(1,).设所求抛物线的解析式为.又E(0,),∴,解得a=﹣.故所求解析式为.综上所求函数的解析式为:或.【点评】本题考查二次函数的性质,考查直线与抛物线的位置关系,训练了利用待定系数法求解函数解析式,注意(3)中的分类讨论,是中档题.21.(本题满分12分)

已知向量,.(1)若,求的值;(2)记,在△ABC中,角A,B,C的对边分别是a,b,c,且满足,求f(A)的取值范围。参考答案:(1)由题意可得,=…4分即,所以.﹣6分(2)∵,则……………4分则,即,∴cosB=,则.∵.………12分22.在△ABC中,a,b,c分别是三内角A,B,C所对应的三边,已知b2+c2=a2+bc(1)求角A的大小;(2)若,试判断△ABC的形状.参考答案:【考点】余弦定理;同角三角函数基本关系的运用.【分析】(1)将b2+c2=a2+bc?b2+c2﹣a2=bc?,由同性结合余弦定理知cosA=,可求出A的大小;(2)用半角公式对进行变形,其可变为cosB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论