




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高二数学一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列中,,,则()A1 B.2 C.3 D.42.已知直四棱柱的高为1,其底面四边形水平放置的斜二测直观图为平行四边形,,,则该直四棱柱的体积为()A. B. C.2 D.43.在空间直角坐标系中,原点,已知点,,则()A.点关于点的对称点为B.点关于轴的对称点为C.点关于轴的对称点为D.点关于平面的对称点为4.已知为正项等比数列,若,,则()A.6 B.4 C.2 D.5.设,是两条不同的直线,,是两个不同的平面,则()A.若,,,则B.若,,,则C.若,,,则D.若,,,则6.设,,,是各项均不为零的等差数列,且公差,若将此数列删去得到的新数列(按原来的顺序)是等比数列,则的值为()A. B. C. D.17.若数列的前项积,则的最大值与最小值的和为()A. B. C.2 D.38.如图,在直三棱柱中,,四边形是边长为1的正方形,,是上的一个动点,过点作平面平面,记平面截四棱锥所得图形的面积为,平面与平面之间的距离为,则函数的图象大致是()A B.C. D.二、多项选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分.9.已知为等差数列的前项和,若,,则()A.数列的公差为 B.C. D.数列为递减数列10.已知某圆锥的顶点为,其底面半径为,侧面积为,若,是底面圆周上的两个动点,则()A.圆锥的母线长为2 B.圆锥的侧面展开图的圆心角为C.与圆锥底面所成角大小为 D.面积的最大值为11.斐波那契数列又称黄金分割数列,因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.斐波那契数列用递推的方式可如下定义:用表示斐波那契数列的第项,则数列满足:,,记是数列的前项和,则()A. B.C. D.12.如图,四个半径为2的实心小球两两相切,则()A.这四个实心小球所形成的空隙内可以放入一个半径为的小球B.这四个实心小球所形成的空隙内可以放入一个棱长为的正方体C.存在一个侧面积为的圆柱可以放进这四个实心小球所形成的空隙内D.这四个实心小球可以放入一个半径为的大球内部三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置13.如图,在正方体中,与垂直的面对角线可以是__________.(写出一条即可)14.已知数列满足,,则__________.15.在四棱锥中,为等边三角形,且平面平面,记直线与平面所成的角为,二面角的大小为,则___________(填“>”“<”“≥”“≤”).16.如图,将正整数按下表的规律排列,把行与列交叉处的那个数称为某行某列的元素,记作,如第2行第4列的数是15,记作,则有序数对是____________.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤17.在正三棱柱中,,,分别为,的中点,点,分别在棱和上,且.(1)证明:四边形为梯形,并求三棱柱的表面积;(2)求三棱台的体积.18.已知递增等比数列的前项和为,且,,等差数列满足,.(1)求数列和的通项公式;(2)若,请判断与的大小关系,并求数列的前20项和.19.在如图所示的圆台中,是下底面圆的直径,是上底面圆的直径,,,,为圆的内接正三角形.(1)证明:平面;(2)求直线与平面所成角的正弦值.20.中小微企业是国民经济的重要组成部分,某小微企业准备投入专项资金进行技术创新,以增强自身的竞争力.根据规划,本年度投入专项资金800万元,可实现销售收入40万元;以后每年投入的专项资金是上一年的一半,销售收入比上一年多80万元.同时,当预计投入的专项资金低于20万元时,就按20万元投入,销售收入则与上一年销售收入相等.(1)设第年(本年度为第一年)投入的专项资金为万元,销售收入为万元,请写出,的表达式;(2)至少要经过多少年后,总销售收入就能超过专项资金的总投入?21.如图(1),已知四边形是边长为2的正方形,点在以为直径的半圆弧上,点为的中点.现将半圆沿折起,如图(2),使异面直线与所成的角为,此时.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025物业智能化升级改造合同协议范本
- 机器设备融资租赁合同
- 2025影院加盟合同模板
- 水果蔬菜招标合同范本
- 北京市房产赠与合同
- 2025关于卧室翻新合同范本
- 钢板加工承包协议书
- 2025年03月四川省达州市“达人英才”事业单位引才169人(广州场)笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 刀轴式刨片机类项目风险评估报告
- 无汞可充电碱锰电池项目风险评估报告
- 2025年部门预算支出经济分类科目说明表
- 《陆上风电场工程概算定额》NBT 31010-2019
- 湖北省水功能区划
- YB-4001.1-2007钢格栅板及配套件-第1部分:钢格栅板(中文版)
- 全北京市二手房最低指导价
- 六年级下册道德与法治第5课应对自然灾害课件
- 黑龙江省第三次国土调查实施方案
- 中考语文复习指导PPT资料30页课件
- 诊所备案申请表格(卫健委备案)
- 案例收球器盲板伤人事故
- 第3章-中子扩散理论2014
评论
0/150
提交评论