版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海民办平和学校高一数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知a=20.3,b=log0.23,c=log32,则a,b,c的大小关系是()A.a<b<c B.c<b<a C.b<a<c D.b<c<a参考答案:D【考点】对数值大小的比较.【分析】利用对数函数、指数函数的单调性求解.【解答】解:∵a=20.3>20=1,b=log0.23<log0.21=0,0=log31<c=log32<log33=1,∴a,b,c的大小关系是b<c<a.故选:D.【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意利用对数函数、指数函数的单调性的合理运用.2.函数的定义域是(
)A.
B.
C.
D.参考答案:A略3.函数的图象过点,则[
]
A.
B.
C.
D.参考答案:A4.函数y=的定义域是()A. B.C. D.参考答案:D【考点】函数的定义域及其求法.【分析】直接求无理式的范围,解三角不等式即可.【解答】解:由2cosx+1≥0得,∴,k∈Z.故选D.5.已知则的值为(
)A.
B.
C.
D.参考答案:B略6.设函数f(x)=,若互不相等的实数x1,x2,x3满足f(x1)=f(x2)=f(x3),则x1+x2+x3的取值范围是(
)A.(] B.() C.(] D.()参考答案:D【考点】分段函数的解析式求法及其图象的作法.【专题】函数的性质及应用.【分析】先作出函数f(x)=的图象,如图,不妨设x1<x2<x3,则x2,x3关于直线x=3对称,得到x2+x3=6,且﹣<x1<0;最后结合求得x1+x2+x3的取值范围即可.【解答】解:函数f(x)=的图象,如图,不妨设x1<x2<x3,则x2,x3关于直线x=3对称,故x2+x3=6,且x1满足﹣<x1<0;则x1+x2+x3的取值范围是:﹣+6<x1+x2+x3<0+6;即x1+x2+x3∈(,6).故选D【点评】本小题主要考查分段函数的解析式求法及其图象的作法、函数的值域的应用、函数与方程的综合运用等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.7.下列说法正确的是:j。随机事件A的概率是频率的稳定值,频率是概率的近似值k。一次试验中不同的基本事件不可能同时发生l。任意事件A发生的概率满足m。若事件A的概率趋近于0,则事件A是不可能事件A.0个
B。1个
C。2个
D。3个参考答案:B略8.如果是偶函数,它在上是增函数,若,则的取值范围是(
)
参考答案:C9.如果一个函数在其定义区间内对任意实数,都满足,则称这个函数是下凸函数,下列函数(1);(2);(3);(4)中是下凸函数的有(
)A.(1)(2)
B.(2)(3)
C.(3)(4)
D.(1)(4)参考答案:D10.设数列是首项为50,公差为2的等差数列,是首项为10,公差为4的等差数列,以为相邻两边的矩形内的最大圆面积记为若则
(
)A.
B.
C.
D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.(4分)求值:+(﹣)0++=
.参考答案:﹣6考点: 有理数指数幂的化简求值.专题: 函数的性质及应用.分析: 利用指数幂与对数的运算法则即可得出.解答: 原式=﹣8+1+lg2+lg5=﹣7+1=﹣6.点评: 本题考查了指数幂与对数的运算法则,属于基础题.12.已知数列满足:则________;=_________.参考答案:解析:本题主要考查周期数列等基础知识.属于创新题型.依题意,得,.
∴应填1,0.13.某学校有教师300人,男学生1500人,女学生1200人,现用分层抽样的方法从所有师生中抽取一个容量为150人的样本进行某项调查,则应抽取的女学生人数为_________.参考答案:60【分析】首先计算出抽样比,再根据分层抽样的原则计算可得结果.【详解】由题意可得抽样比为:则抽取的女学生人数为:人本题正确结果:【点睛】本题考查分层抽样相关计算问题,属于基础题.14.(5分)已知D、E、F分别是△ABC的边BC、CA、AB的中点,且=,=,=,则①=﹣,②=+,③=﹣+,④++=中正确的等式的个数为
.参考答案:3考点: 向量加减混合运算及其几何意义.专题: 平面向量及应用.分析: 画出图形,结合图形,利用平面向量加减运算的几何意义进行解答即可.解答: 如图所示,对于①,==(+)=+=+,∴①错误;对于②,=+=+=+,∴②正确;对于③,=(+)=+=﹣+,∴③正确;对于④,++=(+)+(+)+(+)=(+++++)=,∴④正确;综上,正确的等式个数是3.故答案为:3.点评: 本题考查了平面向量的加减及数乘运算的应用问题,是基础题目.15.若函数在区间内单调递增,则的取值范围是________。参考答案:略16.数列的前项和为,则该数列的通项公式为
。参考答案:略17.盛有水的圆柱形容器的内壁底面半径为5cm,两个直径为5cm的玻璃小球都浸没于水中,若取出这两个小球,则水面将下降________cm.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(Ⅰ);
(Ⅱ)已知求的值.参考答案:(Ⅰ);
(Ⅱ)-1
19.设函数f(x)=|x2﹣4x+3|,x∈R.(1)在区间[0,4]上画出函数f(x)的图象;(2)写出该函数在R上的单调区间.参考答案:【考点】函数的单调性及单调区间;函数的图象.【分析】(1)化简解析式,列表,描点,作图即可;(2)根据图象求解在R上的单调区间.【解答】解:(1)函数f(x)=|x2﹣4x+3|=|(x﹣2)2﹣1|;(列表,描点,作图)x01234y30103(2)根据函数f(x)的图象,不难发现,函数f(x)在x∈(﹣∞,1]上单调递减;函数f(x)在x∈[1,2]上单调递增;函数f(x)在x∈[2,3]上单调递减;函数f(x)在x∈[3,+∞)上单调递增.20.如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.(1)求证:PC⊥BC;(2)求点A到平面PBC的距离.参考答案:【考点】MK:点、线、面间的距离计算;LP:空间中直线与平面之间的位置关系.【分析】(1),要证明PC⊥BC,可以转化为证明BC垂直于PC所在的平面,由PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°,容易证明BC⊥平面PCD,从而得证;(2),有两种方法可以求点A到平面PBC的距离:方法一,注意到第一问证明的结论,取AB的中点E,容易证明DE∥平面PBC,点D、E到平面PBC的距离相等,而A到平面PBC的距离等于E到平面PBC的距离的2倍,由第一问证明的结论知平面PBC⊥平面PCD,交线是PC,所以只求D到PC的距离即可,在等腰直角三角形PDC中易求;方法二,等体积法:连接AC,则三棱锥P﹣ACB与三棱锥A﹣PBC体积相等,而三棱锥P﹣ACB体积易求,三棱锥A﹣PBC的地面PBC的面积易求,其高即为点A到平面PBC的距离,设为h,则利用体积相等即求.【解答】解:(1)证明:因为PD⊥平面ABCD,BC?平面ABCD,所以PD⊥BC.由∠BCD=90°,得CD⊥BC,又PD∩DC=D,PD、DC?平面PCD,所以BC⊥平面PCD.因为PC?平面PCD,故PC⊥BC.(2)(方法一)分别取AB、PC的中点E、F,连DE、DF,则:易证DE∥CB,DE∥平面PBC,点D、E到平面PBC的距离相等.又点A到平面PBC的距离等于E到平面PBC的距离的2倍.由(1)知:BC⊥平面PCD,所以平面PBC⊥平面PCD于PC,因为PD=DC,PF=FC,所以DF⊥PC,所以DF⊥平面PBC于F.易知DF=,故点A到平面PBC的距离等于.(方法二)等体积法:连接AC.设点A到平面PBC的距离为h.因为AB∥DC,∠BCD=90°,所以∠ABC=90°.从而AB=2,BC=1,得△ABC的面积S△ABC=1.由PD⊥平面ABCD及PD=1,得三棱锥P﹣ABC的体积.因为PD⊥平面ABCD,DC?平面ABCD,所以PD⊥DC.又PD=DC=1,所以.由PC⊥BC,BC=1,得△PBC的面积.由VA﹣PBC=VP﹣ABC,,得,故点A到平面PBC的距离等于.21.《九章算术》是我国古代内容极为丰富的数学名著,书中将底面为直角三角形,且侧棱与底面垂直的棱柱称为堑堵,将底面为矩形的棱台称为刍童.在如图所示的堑堵ABM﹣DCP与刍童的组合体中AB=AD,A1B1=A1D1.棱台体积公式:V=(S′++S)h,其中S′,S分别为棱台上、下底面面积,h为棱台高.(Ⅰ)证明:直线BD⊥平面MAC;(Ⅱ)若AB=1,A1D1=2,MA=,三棱锥A﹣A1B1D1的体积V=,求该组合体的体积.参考答案:【考点】LF:棱柱、棱锥、棱台的体积;LW:直线与平面垂直的判定.【分析】(Ⅰ)证明AD⊥MA,推出MA⊥平面ABCD,得到MA⊥BD.结合BD⊥AC,证明BD⊥平面MAC.(Ⅱ)设刍童ABCD﹣A1B1C1D1的高为h,利用几何体的体积公式,转化求解即可.【解答】解:(Ⅰ)证明:由题可知ABM﹣DCP是底面为直角三角形的直棱柱,∴AD⊥平面MAB,又MA?平面MAB,∴AD⊥MA,又MA⊥AB,AD∩AB=A,AD,AB?平面ABCD,∴MA⊥平面ABCD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年物业管理合同服务内容扩展
- 2024年物资采购与销售合同捆绑包
- 2024年科技园区门卫服务协议
- 2025年度电子商务平台场规则与格式规范合同3篇
- 2025版宠物领养与救助机构合作协议范本大全3篇
- 2025年环保型交通工具销售及售后服务协议3篇
- 2024年飞行员培养合同:飞行员委托培养协议2篇
- 《何谓自我概念》课件
- 生鲜猪肉知识培训课件
- 2024年特种压力容器定制安装协议版B版
- 英语-山东省淄博市2024-2025学年第一学期高三期末摸底质量检测试题和答案
- 亿欧智库-2024中国智能驾驶城区NOA功能测评报告
- 甘肃2024年甘肃培黎职业学院引进高层次人才历年参考题库(频考版)含答案解析
- 水利水电工程安全管理制度例文(三篇)
- 2025年超星尔雅学习通《劳动通论》章节测试题库及参考答案(培优)
- 2024预防流感课件完整版
- 新疆乌鲁木齐市(2024年-2025年小学六年级语文)统编版质量测试(上学期)试卷及答案
- 人教版2024-2025学年第一学期八年级物理期末综合复习练习卷(含答案)
- 静脉治疗专科护士竞聘
- 特殊教育多媒体教室方案
- 2024年第一季度医疗安全(不良)事件分析报告
评论
0/150
提交评论