




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省葫芦岛市同泽中学高一数学文下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角的弧度数为
(
)
A.
B.
C.
D.2参考答案:C略2.已知函数f(x)=ax﹣1(a>0,且a≠1),当x∈(0,+∞)时,f(x)>0,且函数g(x)=f(x+1)﹣4的图象不过第二象限,则a的取值范围是()A.(1,+∞) B. C.(1,3] D.(1,5]参考答案:D【考点】指数函数的图象变换.【分析】对a分类讨论:利用指数函数的单调性可得a>1.由于函数g(x)=ax+1﹣5的图象不过第二象限,可得g(0)≤0,求解即可得答案.【解答】解:当a>1时,函数f(x)在(0,+∞)上单调递增,f(x)=ax﹣1>0;当0<a<1时,函数f(x)在(0,+∞)上单调递减,f(x)=ax﹣1<0,舍去.故a>1.∵函数g(x)=f(x+1)﹣4的图象不过第二象限,∴g(0)=a1﹣5≤0,∴a≤5,∴a的取值范围是(1,5].故选:D.【点评】本题考查了指数函数与对数函数的单调性,考查了数学转化思想方法,考查推理能力与计算能力,属于中档题.3.设Sn,Tn分别是等差数列{an},{bn}的前n项和,若=(n∈N*),则=()(A)
(B)
(C)
(D)参考答案:D=4.在中,,则等于(
)A、
B、
C、或
D、参考答案:C5.设全集U是实数集R,M={x|x2>4},N={x|x≥3或x<1}都是U的子集,则图中阴影部分所表示的集合是(
)A.{x|﹣2≤x<1} B.{x|﹣2≤x≤2} C.{x|1<x≤2} D.{x|x<2}参考答案:A【考点】Venn图表达集合的关系及运算.【专题】常规题型.【分析】用集合M,N表示出阴影部分的集合;通过解二次不等式求出集合M;利用交集、补集的定义求出中阴影部分所表示的集合.【解答】解:图中阴影部分表示N∩(CUM),∵M={|x2>4}={x|x>2或x<﹣2},∴CUM={x|﹣2≤x≤2},∴N∩(CUM)={﹣2≤x<1}.故选A【点评】本题考查利用集合的运算表示韦恩图中的集合、考查利用交集、补集的定义求集合的交集、补集.6.下列各组函数中,表示同一个函数的是()A.f(x)=2x+1与g(x)= B.y=x﹣1与y=C.y=与y=x+3 D.f(x)=1与g(x)=1参考答案:D【考点】判断两个函数是否为同一函数.【分析】根据两个函数的定义域相同,对应关系也相同,判断它们是同一函数即可.【解答】解:对于A:f(x)=2x+1的定义域为R,而g(x)=的定义域为{x∈R|x≠0},定义域不同,∴不是同一函数;对于B:y=x﹣1的定义域为R,而y=的定义域为{x∈R|x≠﹣1},定义域不同,∴不是同一函数;对于C:y=的定义域为{x∈R|x≠3},而y=x+3的定义域为R,定义域不同,∴不是同一函数;对于D:f(x)=1(x∈R),g(x)=1(x∈R),他们的定义域相同,对应关系也相同,∴是同一函数;故选D.7.要得到函数y=sin2x的图象,只要将函数y=sin(2x﹣)的图象()A.向左平移单位 B.向右平移单位C.向左平移单位 D.向右平移单位参考答案:C8.设实数x,y满足的约束条件,则的取值范围是(
)A.[-1,1] B.[-1,2] C.[-1,3] D.[0,4]参考答案:C【分析】先画出可行域的几何图形,再根据中z的几何意义(直线在y轴上的截距)求出z的范围.【详解】如图:做出满足不等式组的的可行域,由图可知在A(1,2)处取得最大值3,在点B(-1,0)处取得最小值-1;故选C【点睛】本题主要考查线性规划问题中的截距型问题,属于基础题型,解题中关键是准确画出可行域,再结合z的几何意义求出z的范围.9.已知函数时取最小值,则该函数的解析式为()A.
B.C.
D.参考答案:B10.一个几何体的三视图如图所示(单位:cm),那么此几何体的表面积(单位:cm2)是()A.102 B.128 C.144 D.184参考答案:C【考点】由三视图求面积、体积.【分析】由三视图知几何体为正四棱锥,且底面正方形的边长为8,斜高为5,代入公式计算可得答案.【解答】解:由三视图知几何体为正四棱锥,且底面正方形的边长为8,斜高为5,其直观图如图:∴几何体的表面积S=82+4××8×5=144.故选C.二、填空题:本大题共7小题,每小题4分,共28分11.在三棱锥中,平面,是边长为2的正三角形,,则三棱锥的外接球的表面积为__________.参考答案:【分析】设三棱锥的外接球半径为,利用正弦定理求出的外接圆半径,再利用公式可计算出外接球半径,最后利用球体的表面积公式可计算出结果.【详解】由正弦定理可得,的外接圆直径为,,设三棱锥的外接球半径为,平面,,因此,三棱锥的外接球表面积为,故答案为:.【点睛】本题考查多面体的外接球,考查球体表面积的计算,在求解直棱柱后直棱锥的外接球,若底面外接圆半径为,高为,可利用公式得出外接球的半径,解题时要熟悉这些结论的应用.12.若数列{an}的前n项和为Sn,且,则_______参考答案:-32【分析】由递推关系求得即可求解【详解】当,两式作差得,故,为等比数列,又,故答案为【点睛】本题考查递推关系求通项,考查等比数列通项公式,是基础题13.已知数列{an}满足,,,记数列{an}的前n项和为Sn,则________.参考答案:7500【分析】讨论的奇偶性,分别化简递推公式,根据等差数列的定义得的通项公式,进而可求.【详解】当是奇数时,=﹣1,由,得,所以,,,…,…是以为首项,以2为公差的等差数列,当为偶数时,=1,由,得,所以,,,…,…是首项为,以4为公差的等差数列,则,所以.故答案为:7500【点睛】本题考查数列递推公式的化简,等差数列的通项公式,以及等差数列前n项和公式的应用,也考查了分类讨论思想,属于中档题.14.已知,则这三个数从小到大排列为.(用“<”连接)参考答案:b<a<c【考点】对数值大小的比较.【专题】转化思想;数学模型法;函数的性质及应用.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵0<a=log0.70.9<log0.70.7=1,b=log110.9<0,c=1.10.9>1.∴b<a<c,故答案为:b<a<c.【点评】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题.15.与直线和圆都相切的半径最小的圆的标准方程是_________.参考答案:解:由已知圆可化为:
。……2分(1)设P(x,y)则P落在圆上,且
由图像可知当P分别为圆与x轴的两个交点时分别取得最值
……7分
(2)令ks5u
由图像可知当与圆相切时分别取得最值
由得。
……12分略16.某空间几何体的三视图如图所示,则该几何体的体积为________参考答案:2【分析】根据三视图还原几何体,为一个底面是直角梯形的四棱锥,根据三视图的数据,分别求出其底面积和高,求出体积,得到答案.【详解】由三视图还原几何体如图所示,几何体是一个底面是直角梯形的四棱锥,由三视图可知,其底面积为,高所以几何体的体积为.故答案为2.【点睛】本题考查三视图还原几何体,求四棱锥的体积,属于简单题.17.如图所示是y=Asin(ωx+φ)(A>0,ω>0)的图象的一段,它的一个解析式是
.参考答案:
y=sin(2x+)【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】根据函数的图象,得出振幅A与周期T,从而求出ω与φ的值.【解答】解:根据函数的图象知,振幅A=,周期T=﹣(﹣)=π,即=π,解得ω=2;所以x=﹣时,ωx+φ=2×(﹣)+φ=+2kπ,k∈Z;解得φ=+2kπ,k∈Z,所以函数y的一个解析式为y=sin(2x+).故答案为:y=sin(2x+).三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.写出下列命题的否定。(1)所有自然数的平方是正数。(2)任何实数x都是方程5x-12=0的根。(3)对任意实数x,存在实数y,使x+y>0.(4)有些质数是奇数。参考答案:解析:(1)的否定:有些自然数的平方不是正数。(2)的否定:存在实数x不是方程5x-12=0的根。(3)的否定:存在实数x,对所有实数y,有x+y≤0。(4)的否定:所有的质数都不是奇数。19.(13分)(2015秋?宜昌校级月考)已知函数y=x+有如下性质:如果常数t>0,那么该函数(0,]上是减函数,在[,+∞)上是增函数.(1)已知f(x)=,g(x)=﹣x﹣2a,x∈[0,1],利用上述性质,求函数f(x)的单调区间和值域.(2)对于(1)中的函数f(x)和函数g(x),若对于任意的x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的值.参考答案:【考点】函数恒成立问题;函数单调性的性质.
【专题】函数的性质及应用.【分析】(1)将2x+1看成整体,研究对勾函数的单调性从而求出函数的值域,以及利用复合函数的单调性的性质得到该函数的单调性;(2)对于任意的x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)可转化成f(x)的值域为g(x)的值域的子集,建立关系式,解之即可.【解答】解:(1)f(x)==2x+1+﹣8,设u=2x+1,x∈[0,1],则1≤u≤3,则y=u+﹣8,u∈[1,3],由已知性质得,当1≤u≤2,即0≤x≤时,f(x)单调递减,所以递减区间为[0,]当2≤u≤3,即≤x≤1时,f(x)单调递增,所以递增区间为[,1]由f(0)=﹣3,f()=﹣4,f(1)=﹣,得f(x)的值域为[﹣4,﹣3](2)由于g(x)=﹣x﹣2a为减函数,故g(x)∈[﹣1﹣2a,﹣2a],x∈[0,1],由题意,f(x)的值域为g(x)的值域的子集,从而有所以a=【点评】本题主要考查了利用单调性求函数的值域,以及函数恒成立问题,同时考查了转化的思想和运算求解的能力,属于中档题.20.已知两点A(﹣2,1),B(4,3),两直线l1:2x﹣3y﹣1=0,l2:x﹣y﹣1=0,求:(1)过A且与l1平行的直线方程;(2)过AB中点和两直线交点的直线方程.参考答案:【考点】J9:直线与圆的位置关系.【分析】(1)设出所求直线方程,代入点的坐标求出直线方程即可;(2)分别求出AB的中点坐标以及直线的交点坐标,求出直线方程即可.【解答】解:(1)设与l1:2x﹣3y﹣1=0平行的直线的方程是:2x﹣3y+c=0,将A(﹣2,1)代入直线方程得:﹣4﹣3+c=0,解得:c=7,故所求直线方程是:2x﹣3y+7=0;(2)∵A(﹣2,1),B(4,3),∴AB的中点是M(1,2),联立,解得交点N(2,1),故KMN==﹣1,故所求直线为:y=﹣x+3.21.设.(1)求的单调递减区间;(2)把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数的图象,求的值.参考答案:(1)(2)试题分析:(1)化简,根据正弦函数的单调性可得的单调递增区间;(2)由平移后得进一步可得试题解析:(1)由由得所以,的单调递增区间是(或).(2)由(1)知把的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到的图象,再把得到的图象向左平移个单位,得到的图象,即所以【考点】和差倍半的三角函数,三角函数的图象和性质【名师点睛】本题主要考查和差倍半的三角函数、三角函数的图象和性质、三角函数图象的变换.此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简三角函数,进一步讨论函数的性质,利用“左加右减、上加下减”的变换原则,得出新的函数解析式并求值.本题较易,能较好地考查考生的基本运算求解能
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB31/T 1120-2018城市地下道路交通标志和标线设置规范
- DB31/T 1087-2018民事法律援助服务规范
- DB31/ 566-2011二次供水设计、施工、验收、运行维护管理要求
- CQJTZ/T A04-2022重庆市公路水运智慧工地建设及运行指南
- 远洋货物运输的抗风险能力考核试卷
- 电容器在环境监测设备中的关键作用考核试卷
- 纤维生产过程中的自动化控制技术考核试卷
- 2024年聚酰胺树脂资金需求报告代可行性研究报告
- 2024年滴眼剂项目投资申请报告代可行性研究报告
- 2024年袋装腹膜透析液投资申请报告代可行性研究报告
- 2021译林版高中英语选择性必修四课文翻译
- 测量仪器自检记录表(全站仪)
- 投标咨询服务协议(新修订)
- 2022年虹口区事业单位公开招聘面试考官练习试题附答案
- Java程序设计项目教程(第二版)教学课件汇总完整版电子教案
- 访谈提纲格式4篇
- 能源经济学第10章-能源投融资
- 钢结构监理实施细则(全)
- 世界各个国家二字代码表
- 附件_景观工作面移交表
- TZ 324-2010 铁路预应力混凝土连续梁(刚构)悬臂浇筑施工技术指南
评论
0/150
提交评论