江苏省扬州市邗江区2017年中考数学一模试卷(含解析)_第1页
江苏省扬州市邗江区2017年中考数学一模试卷(含解析)_第2页
江苏省扬州市邗江区2017年中考数学一模试卷(含解析)_第3页
江苏省扬州市邗江区2017年中考数学一模试卷(含解析)_第4页
江苏省扬州市邗江区2017年中考数学一模试卷(含解析)_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省扬州市邗江区2017年中考数学一模试卷(含解析)2017年江苏省扬州市邗江区中考数学一模试卷一、选择题(本大题共8小题,每小题3分,共24分.每题所给的四个选项,只有一个符合题意,请将正确答案的序号填涂在答题卡的相应的表格中)1.5的相反数是()A.﹣5 B.5 C.﹣ D.2.计算(﹣a3b)2的结果是()A.a5b2 B.﹣a3b2 C.2a6b2 D.a6b3.函数y=中,自变量x的取值范围是()A.x≠0 B.x>1 C.x≠1 D.x>0且x≠14.某几何体的三视图如图,则该几何体是()A.三棱柱 B.三棱锥 C.正方体 D.长方体5.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A. B.2 C.+1 D.2+16.甲、乙两位同学在一次实验中统计了某一结果出现的频率,给出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现6点的概率B.掷一枚硬币,出现正面朝上的概率C.任意写出一个整数,能被2整除的概率D.一个袋子中装着只有颜色不同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率7.如图,在⊙O的内接五边形ABCDE中,∠CAD=42°,则∠B+∠E的度数是()A.220° B.222° C.225° D.228°8.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整;(3)计算出扇形统计图中“进取”所对应的圆心角的度数.22.某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:组号分组频数一6≤m<72二7≤m<87三8≤m<9a四9≤m≤102(1)求a的值;(2)将在第一组内的两名选手记为:A1、A2,在第四组内的两名选手记为:B1、B2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).23.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.24.如图,在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连CF(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.25.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.26.如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E,若△BCE的面积为8.(1)求证:△EOB∽△ABC;(2)求反比例函数的解析式.27.小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.求函数y=﹣x2+3x﹣2的“旋转函数”.小明是这样思考的:由y=﹣x2+3x﹣2函数可知a1=﹣1,b1=3,c1=﹣3,根据a1+a2=0,b1=b2,c1+c2=0求出a2,b2,c2,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面的问题:(1)写出函数y=﹣x2+3x﹣2的“旋转函数”;(2)若函数y=﹣x2+mx﹣2与y=x2﹣2nx+n互为“旋转函数”,求(m+n)2017的值;(3)已知函数y=﹣(x+1)(x﹣4)的图象与x轴交于A,B两点,与y轴交于点C,点A,B,C关于原点的对称点分别是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数y=﹣(x+1)(x﹣4)互为“旋转函数”.28.如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD、QC.(1)当t为何值时,点Q与点D重合?(2)当⊙Q经过点A时,求⊙P被OB截得的弦长.(3)若⊙P与线段QC只有一个公共点,求t的取值范围.

2017年江苏省扬州市邗江区中考数学一模试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.每题所给的四个选项,只有一个符合题意,请将正确答案的序号填涂在答题卡的相应的表格中)1.5的相反数是()A.﹣5 B.5 C.﹣ D.【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:5的相反数是﹣5,故选:A.2.计算(﹣a3b)2的结果是()A.a5b2 B.﹣a3b2 C.2a6b2 D.a6b【考点】47:幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方法则求出即可.【解答】解:(﹣a3b)2=a6b2,故选D.3.函数y=中,自变量x的取值范围是()A.x≠0 B.x>1 C.x≠1 D.x>0且x≠1【考点】E4:函数自变量的取值范围.【分析】根据分母不等于0列不等式求解即可.【解答】解:由题意得,1﹣x≠0,解得x≠1.故选C.4.某几何体的三视图如图,则该几何体是()A.三棱柱 B.三棱锥 C.正方体 D.长方体【考点】U3:由三视图判断几何体.【分析】根据三视图易得此几何体为三棱柱.【解答】解:由几何体的三视图即可知道几何体是三棱柱.故选:A.5.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A. B.2 C.+1 D.2+1【考点】LE:正方形的性质.【分析】由正方形的性质和已知条件得出BC=CD==1,∠BCD=90°,CE=CF=,得出△CEF是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH的周长.【解答】解:∵正方形ABCD的面积为1,∴BC=CD==1,∠BCD=90°,∵E、F分别是BC、CD的中点,∴CE=BC=,CF=CD=,∴CE=CF,∴△CEF是等腰直角三角形,∴EF=CE=,∴正方形EFGH的周长=4EF=4×=2;故选:B.6.甲、乙两位同学在一次实验中统计了某一结果出现的频率,给出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现6点的概率B.掷一枚硬币,出现正面朝上的概率C.任意写出一个整数,能被2整除的概率D.一个袋子中装着只有颜色不同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率【考点】X9:模拟实验.【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【解答】解:A、掷一枚正六面体的骰子,出现6点的概率为,故此选项错误;B、掷一枚硬币,出现正面朝上的概率为,故此选项错误;C、任意写出一个整数,能被2整除的概率为,故此选项错误.D、从一装有2个红球和1个黄球的袋子中任取一球,取到黄球的概率是:=≈0.33;故此选项正确;故选:D.7.如图,在⊙O的内接五边形ABCDE中,∠CAD=42°,则∠B+∠E的度数是()A.220° B.222° C.225° D.228°【考点】M5:圆周角定理;L3:多边形内角与外角.【分析】连接CE,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD,然后求解即可.【解答】解:如图,连接CE,∵五边形ABCDE是圆内接五边形,∴四边形ABCE是圆内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=42°,∴∠B+∠E=180°+42°=222°.故选B.8.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元【考点】FH:一次函数的应用.【分析】根据函数图象分别求出设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=﹣x+25,当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=,根据日销售利润=日销售量×一件产品的销售利润,即可进行判断.【解答】解:A、根据图①可得第24天的销售量为200件,故正确;B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=﹣x+25,当x=10时,y=﹣10+25=15,故正确;C、当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(0,100),(24,200)代入得:,解得:,∴y=,当t=12时,y=150,z=﹣12+25=13,∴第12天的日销售利润为;150×13=1950(元),第30天的日销售利润为;150×5=750(元),750≠1950,故C错误;D、第30天的日销售利润为;150×5=750(元),故正确.故选:C二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.计算:()﹣2=9.【考点】6F:负整数指数幂.【分析】根据负整数指数幂的意义,a﹣n=,(a≠0),即可判断.【解答】解:()﹣2===9.故答案是:9.10.某商店三月份盈利264000元,将264000用科学记数法表示应为2.64×105.【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:264000=2.64×105.故选:2.64×105.11.因式分解:a3﹣4a=a(a+2)(a﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).12.若a2+5ab﹣b2=0,则的值为5.【考点】6D:分式的化简求值.【分析】先根据题意得出b2﹣a2=5ab,再由分式的减法法则把原式进行化简,进而可得出结论.【解答】解:∵a2+5ab﹣b2=0,∴b2﹣a2=5ab,∴﹣===5.故答案为:5.13.已知圆锥的底面半径是2cm,母线长为5cm,则圆锥的侧面积是10πcm2(结果保留π)【考点】MP:圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×2×5÷2=10π(cm2).故答案为:10π.14.某公司全体员工年薪的具体情况如表:年薪/万元30149643.53员工数/人1234564则该公司全体员工年薪制的中位数比众数多0.5万元.【考点】W5:众数;W4:中位数.【分析】先根据中位数和众数的定义分别求出该公司全体员工年薪制的中位数与众数,再相减即可.【解答】解:一共有25个数据,将这组数据从小到大的顺序排列后,处于中间位置的那个数是4万元,那么由中位数的定义可知,这组数据的中位数是4万元;众数是一组数据中出现次数最多的数,在这一组数据中3.5万元是出现次数最多的,故众数是3.5万元;所以中位数比众数多4﹣3.5=0.5万元.故答案为0.5.15.如图,直线AB∥CD,直线EF分别于AB,CD交于点E,F,FP⊥EF于点F,且与∠BEF的平分线交于点P,若∠1=20°,则∠P的度数是55°.【考点】JA:平行线的性质;J3:垂线.【分析】根据平行线的性质求得∠BEF=180°﹣90°﹣20°,再进一步根据角平分线的定义求得∠2,进而得到∠P的度数.【解答】解:∵AB∥CD,FP⊥EF于点F,∠1=20°,∴∠BEF=180°﹣90°﹣20°=70°,∵∠BEF的平分线为PE,∴∠2=35°,又∵FP⊥EF,∴Rt△EFP中,∠P=90°﹣35°=55°.故答案为:55°.16.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是2cm.【考点】MM:正多边形和圆.【分析】a的值等于正六边形的边心距的2倍,过正六边形的中心作边的垂线,连接OA,在直角△OAB中,利用三角函数求得边心距OB即可求解.【解答】解:过正六边形的中心作边的垂线,连接OA.则∠O=30°,AB=1∴OB==cm.∴a=2OB=2cm.故答案是:2cm.17.如图,爸爸和小红一起外出散步,他们之间的距离为3.1m,他们在同一盏路灯下的影长分别为1.7m,1.6m,已知爸爸、小红的身高分别为1.7m,1.6m,则路灯的高为3.2m.【考点】SA:相似三角形的应用;U6:中心投影.【分析】根据CD∥AB∥MN,得到△ABE∽△CDE,△ABF∽△MNF,根据相似三角形的性质可知=,=,即可得到结论.【解答】解:如图,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴=,=,即=,=解得:AB=3.2m,故答案为:3.2.18.如图,四边形ABCO是平行四边形,OA=2,AB=6,点C在x轴的负半轴上,将平行四边形ABCO绕点A逆时针旋转得到平行四边形ADEF,点D在直线AO上,点F在x轴的正半轴上,则直线DE的表达式y=﹣x﹣4.【考点】R7:坐标与图形变化﹣旋转;FA:待定系数法求一次函数解析式;L5:平行四边形的性质.【分析】根据旋转的性质以及平行四边形的性质得出∠BAO=∠AOF=∠AFO=∠OAF,得出△OAF的形状,根据等边三角形的性质,可得ON,AN,根据待定系数法,可得AF的解析式,根据直角三角形的性质,可得D点坐标,根据平行线的关系,可得答案.【解答】解:如图所示:过点D作DM⊥x轴于点M,过点A作AN⊥x轴于N点由题意可得:∠BAO=∠OAF,AO=AF,AB∥OC,则∠BAO=∠AOF=∠AFO=∠OAF,OA=OF=AF=2,即F(2,0)ON=OF=1,AN==,A(1,).AF的解析式为y=kx+b,将A、B点坐标代入函数解析式,解得k=﹣,b=2,AF的解析式为y=﹣x+2.∵∠AOF=60°=∠DOM,∵OD=AD﹣OA=AB﹣OA=6﹣2=4,∴MO=2,MD=2,∴D(﹣2,﹣2),∵DE∥AF,∴DE的一次项系数等于AF的一次项系数.设DE的解析式为y=﹣x+b,将D点坐标代入函数解析式,得2+b=﹣2,解得b=﹣4,DE的解析式为y=﹣x﹣4,故答案为:y=﹣x﹣4.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(1)计算:(3﹣π)0+4sin45°﹣+|1﹣|(2)已知a﹣b=,求(a﹣2)2+b(b﹣2a)+4(a﹣1)的值.【考点】4J:整式的混合运算—化简求值;2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】(1)原式利用零指数幂法则,特殊角的三角函数值,二次根式性质,以及绝对值的代数意义化简,计算即可得到结果;(2)原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并后将已知等式代入计算即可求出值.【解答】解:(1)原式=1+2﹣2+﹣1=;(2)原式=a2﹣4a+4+b2﹣2ab+4a﹣4=a2﹣2ab+b2=(a﹣b)2,当a﹣b=时,原式=2.20.求不等式组:的解集,并写出其中正整数解.【考点】CC:一元一次不等式组的整数解;CB:解一元一次不等式组.【分析】首先解每个不等式,确定不等式组的解集,然后确定解集中的正整数解即可.【解答】解:解不等式①,得x≤3,解不等式②,得x≥﹣2,∴这个不等式的解集是﹣2≤x≤3.因此它的正整数解是1,2.3.21.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整;(3)计算出扇形统计图中“进取”所对应的圆心角的度数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据“平等”的人数除以占的百分比得到调查的学生总数即可;(2)求出“互助”与“进取”的学生数,补全条形统计图;(3)求出“进取”占的圆心角度数即可.【解答】解:(1)(1)56÷20%=280(名),答:这次调查的学生共有280名;(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名),补全条形统计图,如图所示,根据题意得:84÷280=30%,360°×30%=108°,答:“进取”所对应的圆心角是108°.22.某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:组号分组频数一6≤m<72二7≤m<87三8≤m<9a四9≤m≤102(1)求a的值;(2)将在第一组内的两名选手记为:A1、A2,在第四组内的两名选手记为:B1、B2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).【考点】X6:列表法与树状图法;V7:频数(率)分布表.【分析】(1)根据被调查人数为20和表格中的数据可以求得a的值;(2)根据题意可以写出所有的可能性,从而可以得到第一组至少有1名选手被选中的概率.【解答】解:(1)由题意可得,a=20﹣2﹣7﹣2=9,即a的值是9;(2)由题意可得,所有的可能性如下图所示,故第一组至少有1名选手被选中的概率是:=,即第一组至少有1名选手被选中的概率是.23.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.【考点】LE:正方形的性质;KD:全等三角形的判定与性质.【分析】(1)根据正方形的性质得出AD=BA,∠BAQ=∠ADP,再根据已知条件得到∠AQB=∠DPA,判定△AQB≌△DPA并得出结论;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等进行判断分析.【解答】解:(1)∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ24.如图,在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连CF(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.【考点】LA:菱形的判定与性质.【分析】(1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;(2)由∠BEF是120°,可得∠EBC为60°,即可得△BEC是等边三角形,求得BE=BC=CE=6,再过点E作EG⊥BC于点G,求的高EG的长,即可求得答案.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=EF,∴四边形BCFE是菱形;(2)解:∵∠BEF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴BE=BC=CE=6,过点E作EG⊥BC于点G,∴EG=BE•sin60°=6×=3,∴S菱形BCFE=BC•EG=6×3=18.25.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.【考点】HE:二次函数的应用;AD:一元二次方程的应用.【分析】(1)根据题意得方程求解即可;(2)设苗圃园的面积为y,根据题意得到二次函数解析式y=x(30﹣2x)=﹣2x2+30x,根据二次函数的性质求解即可.【解答】解:(1)根据题意得:(30﹣2x)x=72,解得:x=3或x=12,∵30﹣2x≤18,∴x≥6,∴x=12;(2)设苗圃园的面积为y,∴y=x(30﹣2x)=﹣2x2+30x=﹣2(x﹣)2+,∵a=﹣2<0,∴苗圃园的面积y有最大值,∴当x=时,即平行于墙的一边长15>8米,y最大=112.5平方米;∵6≤x≤11,∴当x=11时,y最小=88平方米.26.如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E,若△BCE的面积为8.(1)求证:△EOB∽△ABC;(2)求反比例函数的解析式.【考点】S9:相似三角形的判定与性质;G5:反比例函数系数k的几何意义;G7:待定系数法求反比例函数解析式;KP:直角三角形斜边上的中线.【分析】(1)直接利用直角三角形的性质结合相似三角形的判定方法得出答案;(2)利用相似三角形的性质求法k的值即可.【解答】解:(1)∵在Rt△ABC中,点D为斜边AC的中点,∴BD=DC,∴∠DBC=∠DCB=∠EBO,又∠EOB=∠ABC=90°,∴△EOB∽△ABC;(2)∵△EOB∽△ABC∴=,∵△BCE的面积为8,∴BC•OE=8,∵=,∴BC•OE=16,∴AB•OB•=BC•OE,∴k=AB•BO=BC•OE=16,则反比例函数的解析式为:y=.27.小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.求函数y=﹣x2+3x﹣2的“旋转函数”.小明是这样思考的:由y=﹣x2+3x﹣2函数可知a1=﹣1,b1=3,c1=﹣3,根据a1+a2=0,b1=b2,c1+c2=0求出a2,b2,c2,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面的问题:(1)写出函数y=﹣x2+3x﹣2的“旋转函数”;(2)若函数y=﹣x2+mx﹣2与y=x2﹣2nx+n互为“旋转函数”,求(m+n)2017的值;(3)已知函数y=﹣(x+1)(x﹣4)的图象与x轴交于A,B两点,与y轴交于点C,点A,B,C关于原点的对称点分别是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数y=﹣(x+1)(x﹣4)互为“旋转函数”.【考点】HF:二次函数综合题.【分析】(1)由函数函数y=﹣x2+3x﹣2的解析式可知a1=﹣1,b1=3,c1=﹣2,然后依据旋转函数的定义得到﹣1+a2=0,b2=3,﹣2+c2=0,然后求得a2,b2,c2的值即可;(2)依据旋转函数的定义列出关于m、n的方程,从而可求得m、n的值,然后代入计算即可;(3)先求得A,B,C三点的坐标,然后再求得A1,B1,C1的坐标,然后可求得经过点A1,B1,C1的二次函数的解析式,最后依据旋转函数的定义进行判断即可.【解答】解:(1)∵a1=﹣1,b1=3,c1=﹣2,∴﹣1+a2=0,b2=3,﹣2+c2=0,∴a2=1,b2=3,c2=2,∴函数y=﹣x2+3x﹣2的“旋转函数”为y=x2+3x+2;(2)解:根据题意得m=﹣2n,﹣2+n=0,解得m=﹣3,n=2,∴(m+n)2017=(﹣3+2)2017=﹣1;(3)证明:当x=0时,y=﹣(x+1)(x﹣4)=2,则C(0,2),当y=0时,﹣(x+1)(x﹣4)=0,解得x1=﹣1,x2=4,则A(﹣

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论