广东省梅州市八乡山中学2022-2023学年高一数学文月考试题含解析_第1页
广东省梅州市八乡山中学2022-2023学年高一数学文月考试题含解析_第2页
广东省梅州市八乡山中学2022-2023学年高一数学文月考试题含解析_第3页
广东省梅州市八乡山中学2022-2023学年高一数学文月考试题含解析_第4页
广东省梅州市八乡山中学2022-2023学年高一数学文月考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省梅州市八乡山中学2022-2023学年高一数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若全集,,则A.

B.

C.

D.参考答案:B2.(5分)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是() A. 若l⊥m,m?α,则l⊥α B. 若l⊥α,l∥m,则m⊥α C. 若l∥α,m?α,则l∥m D. 若l∥α,m∥α,则l∥m参考答案:B考点: 直线与平面平行的判定.专题: 空间位置关系与距离.分析: 根据题意,依次分析选项:A,根据线面垂直的判定定理判断.C:根据线面平行的判定定理判断.D:由线线的位置关系判断.B:由线面垂直的性质定理判断;综合可得答案.解答: A,根据线面垂直的判定定理,要垂直平面内两条相交直线才行,不正确;C:l∥α,m?α,则l∥m或两线异面,故不正确.D:平行于同一平面的两直线可能平行,异面,相交,不正确.B:由线面垂直的性质可知:平行线中的一条垂直于这个平面则另一条也垂直这个平面.故正确.故选B点评: 本题主要考查了立体几何中线面之间的位置关系及其中的公理和判定定理,也蕴含了对定理公理综合运用能力的考查,属中档题3.某程序框图如图所示,该程序运行后输出S的结果是(

)A.

B.

C.

D.

参考答案:C4.函数满足,且,,则下列等式不成立的是

A

B

C

D参考答案:B略5.下列函数中为偶函数的是A.

B.

C.

D.参考答案:D6.函数y=cos(-2x)的单调递增区间是(

).A.[kπ+,kπ+](k∈Z)

B.[kπ-,kπ+](k∈Z)C.[2kπ+,2kπ+](k∈Z)

D.[2kπ-,2kπ+](k∈Z)参考答案:B略7.cos510°的值为(

)A. B.﹣ C.﹣ D.参考答案:C【考点】运用诱导公式化简求值.【专题】三角函数的求值.【分析】直接利用诱导公式化简求值即可.【解答】解:cos510°=cos(360°+150°)=cos150°=﹣cos30°=.故选:C.【点评】本题考查诱导公式的应用,三角函数的化简求值,基本知识的考查.8.对于等式,下列说法中正确的是(

)A.对于任意,等式都成立

B.对于任意,等式都不成立C.存在无穷多个使等式成立D.等式只对有限个成立参考答案:C略9.(5分)已知圆的方程为x2+y2﹣6x﹣8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为() A. 10 B. 20 C. 30 D. 40参考答案:B考点: 直线与圆相交的性质.专题: 压轴题.分析: 根据题意可知,过(3,5)的最长弦为直径,最短弦为过(3,5)且垂直于该直径的弦,分别求出两个量,然后利用对角线垂直的四边形的面积等于对角线乘积的一半求出即可.解答: 解:圆的标准方程为(x﹣3)2+(y﹣4)2=52,由题意得最长的弦|AC|=2×5=10,根据勾股定理得最短的弦|BD|=2=4,且AC⊥BD,四边形ABCD的面积S=|AC|?|BD|=×10×4=20.故选B点评: 考查学生灵活运用垂径定理解决数学问题的能力,掌握对角线垂直的四边形的面积计算方法为对角线乘积的一半.10.在棱长为1的正方体中ABCD-A1B1C1D1,点P在线段AD1上运动,则下列命题错误的是(

)A.异面直线C1P和CB1所成的角为定值 B.直线CD和平面BPC1平行C.三棱锥D-BPC1的体积为定值 D.直线CP和平面ABC1D1所成的角为定值参考答案:D【分析】结合条件和各知识点对四个选项逐个进行分析【详解】,在棱长为1的正方体中,点在线段上运动易得平面,平面,,故这两个异面直线所成的角为定值,故正确,直线和平面平行,所以直线和平面平行,故正确,三棱锥的体积还等于三棱锥的体积,而平面为固定平面且大小一定,,而平面点到平面的距离即为点到该平面的距离,三棱锥的体积为定值,故正确,由线面夹角的定义,令与的交点为,可得即为直线和平面所成的角,当移动时这个角是变化的,故错误故选【点睛】本题考查了异面直线所成角的概念、线面平行及线面角等,三棱锥的体积的计算可以进行顶点轮换及线面平行时,直线上任意一点到平面的距离都相等这一结论,即等体积法的转换。二、填空题:本大题共7小题,每小题4分,共28分11.若集合,,则_____________参考答案:略12.若角与角的终边互为反向延长线,则与的关系是___________。参考答案:13.的值域是

。参考答案:14.方程的解集为,方程的解集为,已知,则

.参考答案:15.(5分)函数y=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(11)的值等于=

.参考答案:考点: 由y=Asin(ωx+φ)的部分图象确定其解析式.专题: 计算题.分析: 根据所给的三角函数的图象,可以看出函数的振幅和周期,根据周期公式求出ω的值,写出三角函数的形式,根据函数的图象过点(2,2),代入点的坐标,整理出初相,点的函数的解析式,根据周期是8和特殊角的三角函数求出结果.解答: 由图可知函数f(x)的振幅A=2,周期为8,∴8=∴ω=y=2sin(x+φ)∵函数的图象过点(2,2)∴2=2sin(2×+φ)=2sin(+φ)=2cosφ∴cosφ=1∴φ=2kπ当k=0时,φ=0∴三角函数的解析式是y=2sinx∵f(1)+f(2)+f(3)+f(4)+f(5)+f(6)+f(7)+f(8)=0∴f(1)+f(2)+f(3)+…+f(11)=2sin+2sin+…+2sin=2+2故答案为:2+2点评: 本题考查根据函数y=Asin(ωx+φ)的图象确定函数的解析式,考查特殊角的三角函数值,本题解题的关键是看出要求结果的前八项之和等于0,要理解好函数的中的周期、振幅、初相等概念,本题是一个中档题目.16.函数的单调增区间为

.参考答案:略17.若函数在(﹣2,4)上的值域为.参考答案:【考点】函数的值域.【专题】数形结合;转化思想;函数的性质及应用.【分析】函数f(x)=1﹣,由于x∈(﹣2,4),利用反比例函数的单调性可得∈,即可得出.【解答】解:函数==1﹣,∵x∈(﹣2,4),∴∈,∴1﹣∈,∴函数在(﹣2,4)上的值域为∈,故答案为:.【点评】本题考查了反比例函数的单调性,考查了变形能力与计算能力,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(10分)已知二函数f(x)=ax2+bx+5(x∈R)满足以下要求:①函数f(x)的值域为[1,+∞);②f(﹣2+x)=f(﹣2﹣x)对x∈R恒成立.(1)求函数f(x)的解析式;(2)设M(x)=,求x∈[e,e2]时M(x)的值域.参考答案:考点: 二次函数的性质.专题: 函数的性质及应用.分析: (1)配方,利用对称轴和值域求参数,(2)将M(x)化简,然后通过换元法利用基本不等式求值域.解答: (1)∵f(x)=ax2+bx+5=a(x+)2+5﹣,又∴f(﹣2+x)=f(﹣2﹣x),∴对称轴为x=﹣2=﹣,∵值域为[﹣2,+∞),∴a>0且5﹣=1,∴a=1,b=4,则函数f(x)=x2+4x+5,(2)∵M(x)==,∵x∈[e,e2],∴令t=lnx+1,则t∈[2,3],∴===t++2,∵t∈[2,3],∴t++2∈[5,],∴所求值域为:[5,].点评: 本题考查二次函数的性质和换元法求函数的值域,难点是换元法的使用,注意换元要注明范围.19.已知函数f(x)=(1)在给定的直角坐标系内画出f(x)的图象(2)写出f(x)的单调递增区间与减区间.参考答案:【考点】分段函数的应用.【专题】函数的性质及应用.【分析】(1)结合二次函数和一次函数的图象和性质,及已知中函数的解析式,可得函数的图象;(2)结合(1)中函数图象,可得函数的单调区间.【解答】解:(1)函数f(x)的图象如下图(2)当x∈时,f(x)=3﹣x2,知f(x)在上递增;在上递减,又f(x)=x﹣3在(2,5]上是增函数,因此函数f(x)的增区间是和(2,5];减区间是.【点评】本题考查的知识点是分段函数的应用,函数的单调区间,难度不大,属于基础题.20.(12分)已知全集U={0,1,2,3,4,5,6},集合A={x∈N|1<x≤4},B={x∈R|x2﹣3x+2=0}(1)用列举法表示集合A与B;(2)求A∩B及?U(A∪B).参考答案:考点: 交、并、补集的混合运算;集合的表示法.专题: 常规题型;计算题.分析: (1)列举出A与B即可;(2)求出A与B的交集,以及A与B并集的补集即可.解答: (1)集合A={2,3,4},B={1,2};(2)A∩B={2};A∪B={1,2,3,4},∵全集U={0,1,2,3,4,5,6},∴?U(A∪B)={0,5,6}.点评: 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.21.已知集合,,(Ⅰ)求,;(Ⅱ)若,求实数的取值范围.参考答案:(Ⅰ)

(Ⅱ)∵∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论